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ABSTRACT: Here, we systematically investigated how the
force fields and the partial charge models for ligands affect the
ranking performance of the binding free energies predicted by
the Molecular Mechanics/Poisson−Boltzmann Surface Area
(MM/PBSA) and Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) approaches. A total of 46 small
molecules targeted to five different protein receptors were
employed to test the following issues: (1) the impact of five
AMBER force fields (ff99, ff99SB, ff99SB-ILDN, ff03, and
ff12SB) on the performance of MM/GBSA, (2) the influence
of the time scale of molecular dynamics (MD) simulations on
the performance of MM/GBSA with different force fields, (3)
the impact of five AMBER force fields on the performance of
MM/PBSA, and (4) the impact of four different charge models
(RESP, ESP, AM1-BCC, and Gasteiger) for small molecules
on the performance of MM/PBSA or MM/GBSA. Based on
our simulation results, the following important conclusions can be
obtained: (1) for short time-scale MD simulations (1 ns or
less), the ff03 force field gives the best predictions by both
MM/GBSA and MM/PBSA; (2) for middle time-scale MD
simulations (2−4 ns), MM/GBSA based on the ff99 force field
yields the best predictions, while MM/PBSA based on the ff99SB force field does the best; however, longer MD simulations, for
example, 5 ns or more, may not be quite necessary; (3) for most cases, MM/PBSA with the Tan’s parameters shows better
ranking capability than MM/GBSA (GBOBC1); (4) the RESP charges show the best performance for both MM/PBSA and
MM/GBSA, and the AM1-BCC and ESP charges can also give fairly satisfactory predictions. Our results provide useful guidance
for the practical applications of the MM/GBSA and MM/PBSA approaches.

■ INTRODUCTION

The MM/PBSA and MM/GBSA approaches based on MD
simulations have been extensively used in the prediction of
binding free energies.1−22 Both of these two approaches can
rigorously decompose the total binding free energy into different
interaction terms.23−25 They are more computationally efficient
than the more rigorous methods such as free energy perturbation
(FEP) and thermodynamic integration (TI).3,26,27 The binding
free energy for a protein−ligand complex is calculated by MM/
PBSA or MM/GBSA using the following equations:

Δ = − +G G G G( )bind com rec lig (1)

Δ = Δ − Δ ≈ Δ + Δ − ΔG H T S E G T Sbind MM sol (2)

Δ = Δ + Δ + ΔE E E EMM internal electrostatic vdw (3)

Δ = Δ + ΔG G Gsol PB/GB SA (4)

where ΔGbind represents the binding free energy of receptor and
ligand, and it is the summation of the changes of the gas phase
molecular mechanical energy (ΔEMM), the desolvation free
energy (ΔGsol), and the conformational entropy (−TΔS) upon
association of ligand. ΔEMM contains the internal energy term
(ΔEinternal, the summation of bond, angle, and dihedral energies),
the electrostatic energy term (ΔEelectrostatic), and the van der
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Waals energy term (ΔEvdw). ΔGsol is the sum of the electrostatic
(ΔGPB/GB, polar) and nonelectrostatic (ΔGSA, nonpolar)
components. The polar contribution of desolvation is computed
by implicit solvation models, such as Poisson−Boltzmann (PB)
and generalized Born (GB) approaches. PB employs a more
rigorous algorithm than GB,28 but the GB parameters have
always been optimized by fitting experimental data.29−31 Therefore,
it is not easy to judge which one is better, because they show
conflicting performance for different systems.23,32,33

By applying MM/GBSA or MM/PBSA, the energy com-
ponents are computed from a set of conformational snapshots
taken from MD simulations. It is well-known that force field is
the cornerstone for MD simulation, and a large number of force
fields have been developed by fitting parameters to data from
quantum-level calculations and/or experimental data. For
instance, the AMBER force fields in the AMBER molecular
simulation package have many different versions, such as ff94,34

ff99,35 ff99SB,36 ff99SB-ILDN,37 ff03,38 and the latest one,
ff12SB.39 Generally, the newer version of a force field will be
more suitable for some specific questions due to the improve-
ment of the corresponding features. For example, with respect to
ff94 force field the ff99 force field includes an extra Fourier
component to the torsional energy term to achieve a better fitting
for conformational energies.35 In order to overcome the defect of
the overstabilization of proteins, the force field parameters for the
backbone and side-chain torsion potentials in the ff99SB and
ff99SB-ILDN force fields were improved;36,37 by fitting the data
from quantum-level calculations with continuum solvent models.
The ff03 force field was designed to give better descriptions for
macromolecules in condensed-phase.38 In order to enhance the
prediction accuracy for secondary structure propensities over
ff99SB, the protein backbone and side chain dihedral corrections
were updated for the ff12SB force field.39

It may be considered that the latest force field can give better
prediction for binding affinities than the older ones. Unfortu-
nately, as discussed below, the latest force field may not give
better performance than the older versions for the binding
free energies predicted by MM/PBSA or MM/GBSA, because
the fitting for new force field parameters primarily emphasizes
the conformations and dynamics of proteins, not the binding free
energies.36,37

Partial atomic charges also play a very important role in MD
simulations. The partial charges for proteins are usually afforded
by the employed force field, but there are no widely accepted
standards specifying which type of partial charges should be used
for arbitrary small molecules. The restrained electrostatic potential
(RESP) charges,40 which are corrected from the electrostatic
potential (ESP) charges,41 have been widely employed in MD
simulations based on the AMBER force fields. Another charge
model based on semiempirical quantum calculations, named
AM1-BCC (AM1 with bond charge corrections) charges,42 which
have been parametrized on small organic molecules to reproduce
the RESP charges, have shown promising capability to predict small-
molecule hydration free energies43 and protein−ligand binding
affinities.44 By taking advantage of a set of well prepared parameters
based on ab initio calculations, deriving the AM1-BCC charges is
much more time-saving than deriving the RESP or ESP charges.
One charge model that is supported by the antechamber module in
the Amber molecular simulation package is the Gasteiger charge,45

and it has been widely used in virtual screening due to its high
computational efficiency. The Gasteiger charges are not derived
from electrostatic potentials based on quantum-level calculations,
and only depend on the connectivity of the atoms in a molecule.45

Various studies have been performed to investigate the influence
of different protocols and parameters on the predictions of MM/
PBSA and MM/GBSA.32,46−48 For example, we have systemati-
cally investigated the impact of the time scale of MD simulations,
the solute dielectric constant, the entropy calculations, and the
different PB or GB models for computing electrostatic
desolvation on the performances of the MM/PBSA and MM/
GBSA approaches.32 In the following study, we investigated the
performance of MM/PBSA and MM/GBSA to identify the
correct binding poses and rank the binding free energies for an
extensive set of protein−ligand complexes.46 Recently, Genheden
and co-workers evaluated the performance of different protocols
by calculating the entropy term with a normal-mode analysis of
harmonic frequencies in the MM/GBSA and MM/PBSA
approaches.48 Weis et al. studied how the force fields affect the
binding free energies for seven biotin analogues, but they did not
observe any significant difference among the results based on
four force fields.47 The comparison studies on different methods
of deriving partial charges for computing hydration free energies
of small molecules have been reported previously.43,47,49,50

However, the systematic evaluations of the impact of different
methods of deriving partial charges for predicting the protein−
ligand binding free energies using the MM/PBSA and
MM/GBSA approaches have rarely been reported.44

Here, we explored the capability of the MM/GBSA and
MM/PBSA approaches to rank the binding free energies of five
sets of protein−ligand systems by mixing five AMBER force
fields (ff99, ff03, ff99SB, ff99SB-ILDN, and ff12SB) for proteins
and four methods (RESP, ESP, AM1-BCC, and Gasteiger) of
obtaining partial charges for small molecules. In order to
guarantee the reliable assessment, we employed a total of 46
ligands targeted to 5 receptors with well characterized X-ray
crystal structures and experimentally determined binding free
energies.

■ MATERIALS AND METHODS
Preparation of the Tested Systems. The data set for the

MM/PBSA and MM/GBSA calculations include 7 inhibitors for
avidin,13 7 inhibitors for human thrombin,51 8 inhibitors for
neuraminidase,32 16 inhibitors for Pim1 kinase, and 8 inhibitors
for spleen tyrosine kinase (SYK).52 The avidin and neuramini-
dase systems have also been used in our previous study.32

The structures, experimental binding data, and PDB entries for
the studied systems are listed in Table S1 of the Supporting
Information. All the studied systems satisfy the following three
criteria: (1) first, all the studied inhibitors have experimentally
determined binding free energies, the net charges of the inhi-
bitors are ≤1, and the inhibitors for each target show similar
scaffolds; (2) second, each target at least has one crystal structure
in complex with a molecule that is identical or structurally similar
to the studied inhibitors, and all the investigated targets are
relatively rigid with only one binding pose of the inhibitors; (3)
third, all the studied targets do not contain any ion in the binding
pockets, and thus the uncertainty from the inaccurate force field
and PB/GB parameters for ions can be avoided effectively.
For neuraminidase, all 8 inhibitors (c1−c8) have crystal

structures in complex with neuraminidase. For the other 4
systems, since the inhibitors for the same target are structurally
similar, the complexes for the inhibitors involved in each of the
other 4 systems were generated bymanually modifying the ligand
in the selected crystal structure of complex. The details for model
building are described below. The complexes of the inhibitors
a2−a7 for avidin were generated by manually modifying biotin
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(a1) in the crystal structure of the avidin−biotin complex (PDB
entry: 1avd53). The complexes of the inhibitors b2−b7 for
human thrombin were generated bymodifying the inhibitor b1 in
the crystal structure of 1dwc.54 The complexes of the inhibitors
d1−d9 and d11−d16 for Pim1 kinase were generated by
modifying the inhibitor d10 in the crystal structure of 3bgq55 and
a nonstandard residue at position 261 (SEP) in the crystal
structure was mutated to Ala. The complexes of the inhibitors
(e1−e8) for SYK were generated by modifying the inhibitor in
the crystal structure of 3emg.52 All the crystal water molecules
were retained. We prepared the structures above by using
SYBYL-X1.2.56

The studied inhibitors were optimized by semiempirical AM1
method in Gaussian 09.57 Then, single-point calculations in
Gaussian 09 were performed at HF SCF/6-31G* level on the
optimized structures to derive the electrostatic potential, and the
ESP and RESP partial charges were obtained from the
electrostatic potential using the antechamber module in
AMBER 12.58 The same optimized structures were used as
inputs for the antechamber module and used to compute the
AM1-BCC charges by the sqm program in AMBER 12.59 The
Gasteiger charges, commonly used in some docking calculations,
were derived directly from the optimized structures by
antechamber.58

The general AMBER force field (gaf f)60 was assigned for all
inhibitors in this study using antechamber. Five different AMBER
force fields, including ff99, ff99SB, ff99SB-ILDN, ff03, and
ff12SB, were assigned for the proteins, respectively. Counterions,
Na+ or Cl−, were added to the grids that had the lowest or highest
electrostatic potential to neutralize the unbalanced charges in the
complexes. Each complex was immersed into a TIP3P water
box61 that extended at least 10 Å from the complex.
Molecular Dynamics (MD) Simulations. The MM

minimizations and MD simulations were performed using the
sander module in AMBER12.62 Particle mesh Ewald (PME) was
employed to handle the long-range electrostatics,63 and an 8 Å
cutoff was set to treat real-space interactions. Before the MD
simulations, three minimizations were employed to relax the
systems: (1) all backbone Cα atoms were restrained by the
strength of 50 kcal/mol·Å2 and the other atoms were free to
move (500 cycles of steepest descent and 500 cycles of conjugate
gradient minimization); (2) the strength of the restrain was
decreased from 50 to 10 kcal/mol·Å2 and the other atoms were
free to move (500 cycles of steepest descent and 500 cycles of
conjugate gradient minimization); (3) all atoms were optimized
without any constrain (1000 cycles of steepest descent and
4000 cycles of conjugate gradient minimization).
After minimizations, each system was gradually heated from

0 to 300 K in the NVT ensemble over a period of 50 ps, and then
relaxed by 50 ps MD simulations in the NPT ensemble (T =
300 K and P = 1 atm). The protein in the above two stages was
restrained by the strength of 2 kcal/mol·Å2. Finally, 4 ns NPT
(T = 300 K and P = 1 atm) MD simulations were performed.
Temperature was controlled by the Andersen temperature
coupling scheme64 and the pressure was controlled by the
isotropic position scaling protocol applied in AMBER.62 For each
avidin complex, theMD simulations based on the ff99SB and ff03
force fields were extended to 10 ns in order to examine if longer
MD simulations can improve the prediction accuracy when a
force field does not perform well with short or middle time-scale
MD simulations (4 ns or less). All the covalent bonds involving
hydrogen atoms were constrained with the SHAKE algorithm,65

and the time step was set to 2 fs. During the MD simulations, the
atom coordinates were saved every 10 ps (100 frames/ns).

MM/PBSA and MM/GBSA Calculations. The binding free
energy for each system was calculated by the MM/PBSA and
MM/GBSA methodologies according to eqs 1 to 4. In the
MM/GBSA and MM/PBSA calculations, the single-trajectory
protocol, which is much faster than the separate-trajectory
protocol with higher stability of prediction, was used.5,25 As
outlined above, the only difference between MM/PBSA and
MM/GBSA is the method (PB or GB) for calculating
electrostatic desolvation free energy. The gas-phase nonbonded
interaction between protein and inhibitor (ΔEMM) was
calculated with the same force field that was used in the MD
simulations. The nonpolar desolvation free energy (ΔGSA) was
determined by the solvent accessible surface area (SASA) based
on the LCPO algorithm:66 ΔGSA= 0.0072 × ΔSASA.
In the MM/GBSA calculations, the polar desolvation free

energy was calculated by the modified GB model developed by
Onufriev and co-workers (GBOBC1).29 According to our previous
study, GBOBC1 performs better than the other two GB models
(GBHCT and GBOBC2) in AMBER,32 and therefore, the GBOBC1

model was employed in this study. In the PB and GB calculations
the exterior dielectric constant (solvent) was set to 80 and the
interior dielectric constant (solute) was set to 1, 2, or 4.
In the MM/PBSA calculations, the polar desolvation free

energy was calculated by the PB solver implemented in the pbsa
module in AMBER12.67,68 The radii optimized by Tan and Luo
with respect to the reaction field energies computed in the TIP3P
explicit solvents were used.69 The partial charges used in the PB
calculations were taken from the force field parameter set for
protein and the partial charges for inhibitor. The grid size was
defined as 0.5 Å. Due to the expensive computational demand
and no apparent improvement in most cases, entropies were not
considered here.16,18,46,48 Thus, in this study, only the enthalpies
were used for comparison.

Estimation Methods. The Pearson coefficient (rp) was
employed to evaluate the linear correlation between the
predicted binding free energies and the experimental data, and
the Spearman ranking coefficient (rs) was employed to evaluate
the capability of MM/GBSA or MM/PBSA to rank binding free
energies. It is well-known that MM/PBSA or MM/GBSA is
usually used to rank the binding affinities for most systems rather
than give accurate predictions of the absolute binding free
energies.32 Therefore, the Spearman correlation coefficient is a
better choice to evaluate MM/GBSA or MM/PBSA for ranking
the binding affinities. In order to give an overall estimation of the
impact of different force fields and partial charge models on the
predictions for different systems, the Spearman correlation
coefficients for the five systems was simply summed up and
defined as “ranking score”.

■ RESULTS AND DISCUSSION
Effect of the Force Field on the Performance of MM/

GBSA. We first compared the performance of MM/GBSA with
five different force fields available in AMBER12 to rank the
binding free energies. The binding free energies predicted by
MM/GBSA with different force fields are summarized in Table 1.
The energy terms were averaged over the snapshots extracted
from 4 ns MD trajectories. The RESP partial charges were used
for the MM/PBSA and MM/GBSA calculations.
As shown in Table 1, for avidin, all of the tested force fields

perform well. The Spearman correlation coefficient rs ranges
from 0.89 (ff99, ff99SB, and ff99SB-ILDN) to 1.0 (ff03 and ff12SB).
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Our results are consistent with the observations reported byWeis
and co-workers.47 Weis et al. compared the impact of four
AMBER force fields on the binding free energies predicted by
MM/GBSA for seven avidin inhibitors, and they did not find any
significant difference between ff94, ff99, and ff03. The avidin
inhibitors are well ranked and the reason is that, as previously
analyzed,32,47 the range of the binding free energies of the studied
inhibitors is quite large, from −4.5 kcal/mol to −20.4 kcal/mol.
However, for the other four receptor systems, large differences in
the MM/GBSA predictions with different force fields for
inhibitor ranking were observed.
For human thrombin, as shown in Figure 1 B1, the ff99 force

field performs especially well with rs = 0.96 and rp = 0.99, which
are substantially better than the other force fields (rs = 0.07−0.75
and rp = 0.38−0.75). For Pim1, the Spearman correlation
coefficient rs ranges from 0.56 (ff99) to 0.74 (ff99SB-ILDN).
Both of the ff99SB and ff99SB-ILDN force fields show relatively
good performance (rs = 0.72 and 0.74).
For SYK, a large difference of rs was observed among different

force fields with the best rs of 0.63 (ff03 and ff99) and the worst rs
of −0.14 (ff99SB-ILDN). That is to say, the ff99SB-ILDN force
field even gives a reverse prediction for the studied inhibitors,
indicating that the force field used in simulations should be
chosen carefully.
The performance of MM/GBSA for neuraminidase is the

worst, and the best rs is 0.43 (ff99). This suggests that all the force
fields failed in ranking the binding affinities of the neuraminidase
inhibitors. The poor prediction of the neuraminidase inhibitors is
caused by the strong electrostatic interactions between the
inhibitors and the binding pocket, which impedes the accurate
estimation of the polar desolvation free energies, as discussed in
our previous study.32

In order to evaluate the overall ranking capabilities for the five
force fields, we simply summed up the Spearman correlation
coefficient rs, and took it as a ranking score for evaluating
different force fields. The results show that the ff99 force field
gives the best performance with a ranking score of 3.47, whereas
the ff99SB-ILDN force field gives the worst prediction with a
ranking score of only 1.93. Obviously, the ff99 force field should
be employed in most cases when no precedents can be learned.
However, the ff99SB-ILDN force field still may be successfully
used in some systems that have been well tested. For example,
MM/GBSA with the ff99SB-ILDN force field shows the best

capability to rank the inhibitors of Pim1 kinase, with rs =0.74 and
rp = 0.74 (Figure 1 D4).
Similar to the previous studies,32 several solute dielectric

constants (εin = 1, 2, or 4) were employed in the GB calculations.
As listed in Table 1, the predictions are quite sensitive to the
dielectric constant. For avidin, εin = 1 gives the highest Spearman
correlation coefficients for all five force fields, and εin = 4
(or higher) may give reasonable predictions for neuraminidase
due to the highly polarized binding pockets. However, for the
other three systems, the best dielectric constant with the highest
Spearman correlation coefficient is different for various force
fields. For example, for human thrombin, εin = 2 gives the best
predictions for the ff99 and ff03 force fields, εin = 4 gives the best
predictions for the ff99SB and ff99SB-ILDN force fields, and εin =
1 gives the best performance for the ff12SB force field.
A deep analysis of the energy components (Table 2) for the

human thrombin inhibitors shows that the nonpolar interac-
tions (ΔEvdW+ΔGSA) are stable while the polar interactions
(ΔEelec+ΔGGB) have relatively large fluctuations. Especially, for
the inhibitors b5 and b6, the fluctuation is even larger than the
polar interactions themselves. That is to say, the polar inter-
actions are not as stable as the nonpolar interactions. Therefore,
choosing the best solute dielectric constant is essential for
accurate predictions of binding free energy, since it can scale the
electrostatic interactions. For the inhibitors with small difference
of binding free energies, for example, the 16 Pim1 kinase
inhibitors with ΔG = −7.8 to −10.9 kcal/mol and the 8 SYK
inhibitors with ΔG = −7.8 to −11 kcal/mol (Table S1 in the
Supporting Information), slight fluctuations of the polar
interactions may affect the ranking results significantly. More-
over, by comparing Tables 1 and 3 (the results based on 1 ns MD
simulations and will be discussed in the next section), we observe
that the best dielectric constants judged by the predicted binding
affinities based on different lengths of MD simulations may be
different. For example, for human thrombin, εin = 1 seems the
best choice for the ff99 force field, but εin = 2 shows better
ranking performance when the MD simulations going on.
Therefore, for some systems, rigorous validation is necessary for
choosing a reliable dielectric constant.

Can Relatively Longer MD Simulations Improve the
Predictions? Our previous studies show that short MD
simulations may give a better performance for ranking binding
free energy (only studied by the ff03 force field)32 than longer
MD simulations, and thus here we analyzed the results based on

Table 1. The Highest Spearman and Pearson Correlation Coefficients (rs and rp) and the Corresponding Solute Dielectric
Constants for the MM/GBSA Calculations with Five AMBER Force Fields Based on the 0.2−4 ns MD Trajectoriesa

ff99 ff03 ff99SB ff99SB-ILDN ff12SB

rs
a rp

b rs rp rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
0.89 0.82 1.00 0.92 0.89 0.84 0.89 0.90 1.00 0.92

human thrombin εin = 2 εin = 2 εin = 2 εin = 2 εin = 4 εin = 4 εin = 4 εin = 2 εin = 1 εin = 2
0.96 0.99 0.75 0.62 0.57 0.64 0.07 0.52 0.50 0.55

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.43 0.41 0.02 0.17 0.36 0.18 0.37 0.21 0.4 0.4

Pim-1 kinase εin = 2 εin = 2 εin = 1 εin = 1 εin = 1 εin = 2 εin = 1 εin = 1 εin = 1 εin = 1
0.56 0.5 0.62 0.62 0.72 0.73 0.74 0.74 0.58 0.59

SYK εin = 2 εin = 4 εin = 1 εin = 1 εin = 4 εin = 4 εin = 4 εin = 4 εin = 2 εin = 1
0.63 0.35 0.63 0.57 0.40 0.19 −0.14 −0.11 0.34 0.56

ranking score 3.47 3.02 2.94 1.93 2.82
aThe values of ars and

brp in the Tables 1 and 3−7, are all the highest Spearman and Pearson correlation coefficients among the three dielectric
constants (1, 2, and 4) under different calculation process.
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the 0.2−1 ns MD trajectories. As shown in Table 3, for the ff03
force field, the results based on the 0.2−1 nsMD trajectories are a
bit better than those based on 0.2−4 ns MD trajectories
(Table 1), with the ranking scores of 3.25 versus 3.02. In addition,
the ff99SB-ILDN force field also shows better performance when
the calculations were based on 0.2−1 ns instead of 0.2−4 ns MD

trajectories. However, for the other three force fields (ff99,
ff99SB, and ff12SB), the short time-scale MD simulations give
slightly worse performance than the longerMD simulations, with
the ranking scores of 3.24 versus 3.47 for the ff99 force field,
2.92 versus 2.94 for the ff99SB force field, and 2.68 versus 2.82 for
the ff12SB force field.

Figure 1. Spearman and Pearson correlations (rs and rp) between the binding free energies calculated by MM/GBSA based on the 4 ns MD trajectories
and the experimental values for (A) avidin, (B) human thrombin, (C) neuraminidase, (D) Pim1 kinase, and (E) SYK with the five AMBER force fields,
including (1) ff99, (2) ff03, (3) ff99SB, (4) ff99SB-ILDN, and (5) ff12SB.
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In order to investigate the time dependence of the ranking
capabilities for different force fields, the time evolution curves of
the Spearman correlation coefficients were plotted (Figure 2).
For ff03 (blue curve), the Spearman correlation coefficients
decline for neuraminidase and Pim1 kinase, remain stable for
avidin and human thrombin, and increase for SYK. For most
systems the shorter MD simulations based on the ff03 force field
give better ranking results than the prolonged simulations.
However, shorter MD simulations may not be the best choice

for the other force fields. For ff99 (red curve), the Spearman
correlation coefficients for three systems (avidin, human
thrombin, and SYK) increase along the simulations, and those
for Pim1 kinase and neuraminidase rise at the first 2 ns and then
decline. For the ff99SB (cyan curve), the Spearman correlation
coefficients rise for three systems (human thrombin, neurami-
nidase, and Pim1 kinase), remains stable for avidin, and decrease
for SYK. For ff99SB-ILDN (purple curve), the Spearman
correlation coefficients rise for avidin, decline for human
thrombin and SYK, rise at the first 2 and 3 ns, and then decline

for neuraminidase and Pim1 kinase, respectively. For ff12SB
(green curve), the Spearman correlation coefficients rise for
avidin and neuraminidase, rise at the first 2 ns and then decline
for human thrombin, and decline at the first 2 ns and then rise for
Pim1 kinase. Interestingly, the Spearman correlation coefficients
for SYK show significant fluctuation, and it is possible that the
ff12SB force field cannot give stable simulations for the SYK
systems. Therefore, reasonably longer MD simulations will be
helpful for achieving stable predictions for the ff99, ff99SB,
ff99SB-ILDN, and ff12SB force fields, but shorter MD
simulations are preferred for the ff03 force field.
The previous discussions are based on middle time-scale simula-

tions (4 ns), and it is concluded that the shorter simulations
(1 ns) will be enough for the ff03 force field. However, no tests
have been preformed for the relatively longer MD simulations
(10 ns). Here, 10 ns MD simulations were performed for the
avidin inhibitors. Due to the expensive computational demand,
only the ff03 and ff99SB force fields were employed for the avidin
systems. As illustrated in Figure 2F, for these two force fields, the

Table 3. Highest Spearman and Pearson Correlation Coefficients (rs and rp) and the Corresponding Solute Dielectric Constants
for the MM/GBSA Calculations with Five AMBER Force Fields Based on the 0.2−1 ns MD Trajectories

ff99 ff03 ff99SB ff99SB-ILDN ff12SB

rs rp rs rp rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
0.86 0.76 1 0.91 0.89 0.86 0.86 0.82 0.96 0.87

human thrombin εin = 1 εin = 1 εin = 1 εin = 1 εin = 4 εin = 4 εin = 1 εin = 2 εin = 2 εin = 2
0.86 0.94 0.93 0.83 0.5 0.4 0.39 0.54 0.71 0.76

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.57 0.47 0.12 0.44 0.21 0.23 0.24 0.48 0.1 0

Pim-1 kinase εin = 1 εin = 1 εin = 4 εin = 2 εin = 1 εin = 4 εin = 1 εin = 1 εin = 1 εin = 1
0.67 0.62 0.67 0.67 0.7 0.75 0.72 0.75 0.61 0.66

SYK εin = 2 εin = 2 εin = 4 εin = 2 εin = 1 εin = 1 εin = 4 εin = 4 εin = 4 εin = 4
0.28 0.18 0.53 0.57 0.62 0.29 0.1 0.07 0.3 0.24

ranking score 3.24 3.25 2.92 2.31 2.68

Table 2. Comparison of the Calculated Effective Binding Free Energies (Enthalpies, ΔEenthalpy) of the Human Thrombin System
Based on Five Force Fields with the Dielectric Constant of 1 and the Simulation Time of 4 ns (kcal/mol)

b1 b2 b3 b4 b5 b6 b7

ff99 ΔEelec + ΔGGB
a 13.56 ± 0.86c 12.16 ± 0.42 15.82 ± 1.82 13.15 ± 0.86 2.23 ± 1.22 0.01 ± 0.43 13.53 ± 0.98

ΔEvdW + ΔGSA
b −60.46 ± 0.44 −57.30 ± 0.03 −55.38 ± 0.18 −58.58 ± 0.15 −53.96 ± 0.71 −52.36 ± 1.11 −58.14 ± 0.67

ΔEenthalpy −46.90 ± 0.42 −45.15 ± 0.45 −35.99 ± 2.00 −45.42 ± 0.71 −51.73 ± 1.93 −52.35 ± 1.54 −44.61 ± 0.31
ff03 ΔEelec + ΔGGB 12.82 ± 0.81 12.12 ± 0.47 9.15 ± 2.35 13.62 ± 1.89 4.02 ± 0.4 0.67 ± 1.14 14.14 ± 0.17

ΔEvdW + ΔGSA −62.45 ± 0.48 −58.76 ± 0.00 −55.95 ± 0.33 −57.59 ± 1.6 −56.64 ± 0.94 −51.81 ± 0.49 −60.23 ± 1.05
ΔEenthalpy −49.63 ± 1.3 −46.64 ± 0.47 −46.80 ± 2.68 −43.98 ± 0.29 −52.62 ± 0.55 −51.14 ± 0.66 −46.09 ± 0.87

ff99SB ΔEelec + ΔGGB 14.41 ± 0.85 9.37 ± 0.81 2.10 ± 0.76 10.21 ± 1.65 9.72 ± 0.14 6.98 ± 1.52 11.86 ± 0.21
ΔEvdW + ΔGSA −61.41 ± 0.27 −55.83 ± 0.23 −54.04 ± 1.01 −56.85 ± 0.51 −59.88 ± 0.16 −54.12 ± 0.50 −59.53 ± 0.70
ΔEenthalpy −46.99 ± 0.58 −46.45 ± 1.03 −51.94 ± 0.25 −46.64 ± 1.14 −50.16 ± 0.02 −47.14 ± 1.02 −47.67 ± 0.49

ff99SB-
ILDN

ΔEelec + ΔGGB 15.39 ± 1.00 2.85 ± 2.23 15.54 ± 1.78 12.13 ± 0.55 9.38 ± 1.99 −2.82 ± 1.88 11.30 ± 1.72
ΔEvdW + ΔGSA −60.37 ± 0.15 −56.40 ± 0.11 −56.36 ± 0.20 −59.66 ± 0.05 −56.51 ± 0.43 −50.19 ± 0.65 −61.35 ± 1.00
ΔEenthalpy −44.99 ± 1.15 −53.55 ± 2.34 −40.83 ± 1.98 −47.54 ± 0.60 −47.13 ± 1.55 −53.02 ± 1.23 −50.05 ± 0.71

ff12SB ΔEelec + ΔGGB 14.41 ± 1.91 2.79 ± 0.58 12.03 ± 0.00 13.92 ± 1.65 −2.50 ± 0.33 −1.86 ± 0.15 13.86 ± 0.76
ΔEvdW + ΔGSA −60.37 ± 0.00 −56.85 ± 2.96 −54.88 ± 0.84 −57.22 ± 0.98 −52.12 ± 0.60 −50.49 ± 0.92 −59.54 ± 0.02
ΔEenthalpy −45.96 ± 1.91 −54.05 ± 3.54 −42.86 ± 0.84 −43.30 ± 2.63 −54.62 ± 0.27 −52.35 ± 0.77 −45.67 ± 0.75

average ΔEelec + ΔGGB 14.23 ± 0.80 7.85 ± 4.72 10.83 ± 5.69 12.26 ± 1.41 4.61 ± 5.13 1.10 ± 4.01 13.05 ± 1.43
ΔEvdW + ΔGSA −61.07 ± 1.03 57.07 ± 1.19 −55.35 ± 0.93 −57.90 ± 1.19 −55.86 ± 2.96 −52.05 ± 1.68 −59.77 ± 1.18
ΔEenthalpy −46.84 ± 1.62 −49.22 ± 4.24 −44.52 ± 5.11 −45.64 ± 1.60 −51.25 ± 2.81 −50.95 ± 2.44 −46.72 ± 2.17
ΔGexp −11 −8.1 −5 −9.2 −10.7 −9.8 −9.4

aΔEelec + ΔGGB denotes polar part of the enthalpy (ΔEenthalpy). bΔEvdW + ΔGSA represents the nonpolar part of the enthalpy.
cThe statistical error

was estimated on the basis of the deviation between two block averages.
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Spearman correlation coefficients are stable originally and then
decrease along the simulations; that is to say, if the ranking
results cannot be improved at the beginning of the
simulations, such as the first 4 ns, the longer the simulations
are performed, the worse the results obtained. It is possible
that with the simulation time extended, the protein complexes
for some inhibitors may undergo large conformational
changes due to inaccurate force field parameters, which may
result in different binding modes of inhibitors compared with
those in the crystal structures. As shown in Figure 3, for the

AMBER03 force field, except inhibitors a2 (green) and a3
(red), most avidin complexes show increased and fluctuated
root-mean-square deviations (RMSDs) at the later stage of the
MD simulations. Therefore, a reasonable time scale of MD
simulations, such as 1−4 ns, will be enough for most cases
when calculating binding free energies based on well-
characterized X-ray crystal structures. However, further
studies may still be needed to determine whether much longer
simulations, such as microsecond-level MD simulations, should be
used for the systems with flexible binding sites.

Figure 2.The time evolution of the Spearman correlations (rs) calculated byMM/GBSA based on the 4 ns (A−E) and 10 nsMD trajectories (F) for (A)
avidin, (B) human thrombin, (C) neuraminidase, (D) Pim1 kinase, and (E) SYK with the five AMBER force fields, including (1) ff99 (red), (2) ff03
(blue), (3) ff99SB (cyan), (4) ff99SB-ILDN, and (5) ff12SB.
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Comparison of the Ranking Results by MM/GBSA
(GBOBC1) andMM/PBSA. In our previous study,32 we compared
the performance of MM/GBSA with three GB models (GBHTC,
GBOBC1, and GBOBC2) and MM/PBSA with the Delphi II
program,70 and we found that MM/GBSA with GBOBC1 achieves
the best performance, even better than MM/PBSA with Delphi
II. In AMBER12, the default PB solver is implemented in the pbsa
program developed by Lu and Luo.68 Moreover, the compatible
radii for pbsa were optimized by Tan and Luo with respect to the
reaction field energies computed in the TIP3P explicit solvents,69

which were not tested in our previous studies.32 Therefore, it is
possible that the pbsa program has better compatibility with the
AMBER force field than Delphi II. Thus, in this section, we
compared the performance of MM/GBSA with GBOBC1 and
MM/PBSA with pbsa and Tan’s radii set for three most popular
AMBER force fields (ff99, ff03, and ff99SB) based on 4 ns MD
simulations. As listed in Table 4, the ranking scores for the ff03

and ff99SB force fields based on MM/PBSA (3.38 and 3.51) are
obviously higher than those based on MM/GBSA (3.02 and
2.94) as shown in Table 1. For ff99, the ranking score of
MM/PBSA is 3.13, which is worse than that of MM/GBSA (3.47).
Further investigations show that MM/PBSA with the

ff03 force field (rs = 0.49) gives much better performance than
MM/GBSA with the ff03 force field (0.02) to rank the
neuraminidase inhibitors. However, for Pim1 kinase and SYK,

the predictions given by MM/PBSA with the ff03 force field
become slightly worse than those given by MM/GBSA with the
ff03 force field (Figure 4D). For the ff99SB force field, as
illustrated in Figure 4F, the ranks predicted by MM/PBSA for
human thrombin and SYK are remarkably improved, indicated
by the rs values of 0.86 and 0.83, compared to those of 0.57 and
0.40 given by MM/GBSA.
For the ff99SB force field, MM/PBSA gives a worse prediction

(rs = 0.19), indicating that MM/PBSA cannot rank the
neuraminidase inhibitors effectively. Moreover, for the ff99
force field, the predictions given by MM/PBSA are worse than
those by MM/GBSA (GBOBC1) for several systems, including
human thrombin, neuraminidase, and SYK. However, overall, for
most cases, MM/PBSA with the pbsa program gives better
predictions than MM/GBSA (GBOBC1).
The MM/PBSA results with three force fields (ff99, ff99SB,

and ff03) were compared. As shown in Table 4, the ff99SB force
field shows satisfactory performance for four systems, includ-
ing avidin (rs = 0.89), human thrombin (rs = 0.86), Pim1 kinase
(rs = 0.74), and SYK (rs = 0.83), but it does not give acceptable
predictions for neuraminidase (rs = 0.49).
In fact, as shown in Figure 4 (B, D, F), no force field, based on

either MM/PBSA or MM/GBSA with the MD simulations of 4 ns,
gives reasonable predictions for the neuraminidase systems, and
even rs for the best prediction given byMM/PBSAbased on theff03
force field is slightly below 0.5 (0.49). That is to say, all force fields

Figure 3. Root-mean-square deviations (RMSDs) of the backbone of the avidin systems based on the 10 ns trajectories simulated by the ff03 force field.

Table 4. Highest Spearman and Pearson Correlation
Coefficients (rs and rp) and the Corresponding Solute
Dielectric Constants for the MM/PBSA Calculations with
Three AMBER Force Fields Based on the 0.2−4 ns MD
Trajectories

ff99 ff03 ff99SB

rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
0.89 0.82 1 0.95 0.89 0.89

human thrombin εin = 2 εin = 4 εin = 4 εin = 2 εin = 4 εin = 4
0.79 0.95 0.75 0.61 0.86 0.71

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.31 0.50 0.49 0.48 0.19 0.2

Pim-1 kinase εin = 1 εin = 1 εin = 2 εin = 2 εin = 1 εin = 1
0.65 0.58 0.59 0.61 0.74 0.76

SYK εin = 4 εin = 4 εin = 2 εin = 1 εin = 1 εin = 1
0.49 0.34 0.55 0.70 0.83 0.75

ranking score 3.13 3.38 3.51

Table 5. Highest Spearman and Pearson Correlation
Coefficients (rs and rp) and the Corresponding Solute
Dielectric Constants for the MM/PBSA Calculations with
Three AMBER Force Fields Based on the 0.2−1 ns MD
Trajectories

ff99 ff03 ff99SB

rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
0.86 0.75 1.00 0.95 0.89 0.89

human thrombin εin = 2 εin = 2 εin = 2 εin = 2 εin = 4 εin = 4
0.86 0.89 0.79 0.77 0.5 0.53

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.55 0.52 0.69 0.72 0.29 0.29

Pim-1 kinase εin = 1 εin = 1 εin = 2 εin = 2 εin = 2 εin = 4
0.63 0.61 0.66 0.66 0.70 0.75

SYK εin = 4 εin = 4 εin = 2 εin = 4 εin = 1 εin = 1
0.32 0.18 0.55 0.52 0.86 0.68

ranking score 3.22 3.69 3.24
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fail in ranking the binding affinities for the neuraminidase systems.
Thus, formost cases, the ff99SB force field is a good choice forMM/
PBSA based on a reasonable time scale of MD simulations (4 ns).
Then, theMM/PBSA results between short time-scale (0.2−1 ns)

and middle time-scale simulations (0.2−4 ns) were also compared.

As shown in Table 4, Table 5, and Figure 4, the ff03 force field
performs better with the ranking score of 3.69 than the other two
force fields, and even the rs of neuraminidase also reaches to 0.69.
Therefore, for the MM/PBSA calculations based on shorter MD
simulations (1 ns), the ff03 force field is also a good choice.

Figure 4. The comparison of MM/GBSA (blue) and MM/PBSA (red) results of five systems and three force fields based on 1 and 4 ns simulation
trajectories. (A) ff99 based on the 1 ns simulations, (B) ff99 based on the 4 ns simulations, (C) ff03 based on the 1 ns simulations, (D) ff03 based on the
4 ns simulations, (E) ff99SB based on the 1 ns simulations, and (F) ff99SB based on the 4 ns simulations.
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In summary, for the ff03 and ff99SB force fields, the binding free
energies calculated by MM/PBSA with the pbsa program give
better ranking results than those calculated by MM/GBSA with
GBOBC1. Moreover, for most cases, short and middle time-scale
MD simulations are compatible with the ff03 and ff99SB force
fields, respectively.

Effect of Ligand ChargeModels onMM/GBSA andMM/
PBSA. Since the ff03 force field performs well in ranking
inhibitors based on shorter MD simulations, we employed it to
examine how the methods of obtaining partial charges for
ligands, including the RESP, ESP, AM1-BCC, and Gasteiger
charges, affect the ranking results given by MM/GBSA and

Table 6. Highest Spearman and Pearson Correlation Coefficients (rs and rp) and the Corresponding Solute Dielectric Constants
for the MM/GBSA Calculations with Different Partial Charges for Ligands Based on the 0.2−1 ns MD Trajectories

RESP AM1-BCC ESP GAS

rs rp rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
1.00 0.91 0.89 0.88 0.96 0.93 0.21 0.62

human thrombin εin = 1 εin = 1 εin = 1 εin = 1 εin = 4 εin = 2 εin = 4 εin = 2
0.93 0.83 0.57 0.49 0.46 0.39 0.36 0.30

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.12 0.44 0.40 0.44 0.33 0.29 0.14 −0.01

Pim-1 kinase εin = 4 εin = 2 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 2
0.67 0.67 0.66 0.72 0.69 0.69 0.63 0.57

SYK εin = 4 εin = 2 εin = 1 εin = 2 εin = 2 εin = 1 εin = 1 εin = 2
0.53 0.57 0.57 0.22 0.74 0.65 0.51 0.74

ranking score 3.25 3.09 3.18 1.85

Figure 5. Comparison of the MM/GBSA (blue) and MM/PBSA (red) results based on the 1 ns simulations for (A) the RESP charges, (B) the ESP
charges, (C) the AM1-BCC charges, and (D) the Gasteiger charges.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp404160y | J. Phys. Chem. B 2013, 117, 8408−84218417



MM/PBSA based on shorter MD simulations (Table 6).
The RESP charges give the best ranking score (3.25) among
the four types of partial charges employed by MM/GBSA. Our
observations are not surprising because the RESP charges are
optimized from the ESP charges, and they are less conformation-
dependent than the RESP charges and can avoid the problem of
large ESP charges that may be problematic for simulating intra-
molecular interactions.40 The AM1-BCC charges were designed
to reproduce atomic charges that emulate the electrostatic
potential at the HF/6-31G* level of theory for small molecules
based on a set of optimized parameters. According to our
predictions, the ranking capability of the AM1-BCC charges
(ranking score = 3.18) is even better than that of the ESP charges
(ranking score = 3.09), and only slightly worse than that of the
RESP charges. The little difference in the ranking scores between
the RESP and AM1-BCC charges suggests that the AM1-BCC
charges show quite good compatibility with the ff03 force field
and are good replacements of the RESP charges in MD
simulations and free energy calculations.
According to the comparison study (Table 6), the Gasteiger

charges yield the worst ranking results (ranking score = 1.85).
The Gasteiger charges only give reasonable results for Pim1
kinase and SYK (Figure 5). As mentioned above, the Gasteiger
charges are derived from an empirical approach, and they are
apparently not compatible with the ff03 force field in most cases.
Therefore, although the Gasteiger charge model has been
widely used in virtual screening, it is not a good choice for the
MM/PBSA andMM/GBSA calculations implemented in AMBER.
A comparison was also made for MM/PBSA based on the four

methods of obtaining partial charges. As shown in Table 7, the
RESP charges still show the best performance, the AM1-BCC
and ESP charges also give comparable ranking results, and the
Gasteiger charges yield the worst predictions. In numerous cases
the AM1-BCC partial charges have shown comparative
prediction capability with the RESP charges.33,43,49 Our results
also illustrate that the predictions based on the AM1-BCC
charges are satisfactory and they are only slightly worse than
those based on the RESP charges. Moreover, for two systems
(Pim1 kinase and SYK), the AM1-BCC charges even give better
predictions than the RESP charges (Figure 5A and B).
For all of the four types of charges, compared withMM/GBSA

(GBOBC1), MM/PBSA with the pbsa module always gives better
predictions to rank the binding affinities (Figure 5). In summary,
MM/PBSA based on the RESP charges makes the best
predictions for ranking the inhibitors, and MM/PBSA based
on the AM1-BCC charges also gives comparative results.

Considering the high computational efficiency, the AM1-BCC
charge model is the best choice for screening large-scale
compound libraries.

■ CONCLUSION
We examined the impact of five force fields and four methods of
deriving partial charges for small molecules on the binding free
energies predicted by the MM/GBSA and MM/PBSA
approaches. Our conclusions are as follows:

(1) For MM/GBSA with GBOBC1, the ff99 force field gives the
best results when using middle time-scale MD simulations
(4 ns), and the ff03 force field gives the best results when
using short time-scale MD simulations (1 ns). Overall, the
ff03 force field is the best choice for most cases when no
precedents can be learned and short time-scale simulations
are performed, such as the processing of docking results as
studied by our previous work.46

(2) When middle time-scale MD simulations are performed,
such as 2−4 ns, the ff99 or ff12SB force field may be a good
choice as mentioned above, while the other tested force
fields will be recommended for short MD simulations
(1 ns or less); however, the simulation time is heavily
system-dependent. For rigid systems with only one binding
position of the ligands, such as the systems investigated in
this study, a longer MD simulation, for example, 10 ns,
may not be necessary to achieve better predictions, if only
the binding energies need to be calculated.

(3) For most cases, MM/PBSA with the pbsa program and
Lu’s radii set gives better ranking results than MM/GBSA
with GBOBC1. For shorter MD simulations (1 ns), the ff03
force field yields the best results by MM/PBSA as it does
by MM/GBSA; while for middle time-scale MD
simulations (4 ns), the ff99SB force field is the best choice
for MM/PBSA.

(4) Based on shorter MD simulations (1 ns), we found that
the RESP charge, with no doubt, is the best for the
MM/GBSA and MM/PBSA calculations with the
AMBER force fields, while the AM1-BCC and ESP charge
also afford comparative predictions. Due to the high
computational efficiency, the AM1-BCC charges are
preferred for screening large-scale compound libraries by
short MD simulations and MM/GBSA.

Our study gives a systematic evaluation of the impact of force
fields for proteins, time scale of MD simulations, methods of
obtaining partial charges for small molecules, and binding free

Table 7. Highest Spearman and Pearson Correlation Coefficients (rs and rp) and the Corresponding Solute Dielectric Constants
for the MM/PBSA calculations with Different Partial Charges for Ligands Based on the 0.2−1 ns MD Trajectories

RESP AM1-BCC ESP GAS

rs rp rs rp rs rp rs rp

avidin εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1 εin = 1
1.00 0.95 0.89 0.91 0.96 0.95 0.21 0.69

human thrombin εin = 2 εin = 2 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.79 0.77 0.61 0.64 0.54 0.41 0.5 0.33

neuraminidase εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4 εin = 4
0.69 0.72 0.81 0.70 0.38 0.38 0.17 0.00

Pim-1 kinase εin = 2 εin = 2 εin = 1 εin = 1 εin = 1 εin = 1 εin = 4 εin = 2
0.66 0.66 0.74 0.76 0.73 0.74 0.59 0.57

SYK εin = 2 εin = 4 εin = 4 εin = 4 εin = 4 εin = 2 εin = 2 εin = 1
0.55 0.52 0.44 0.19 0.72 0.69 0.69 0.91

ranking score 3.69 3.49 3.33 2.16
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energy calculation methods on ranking binding free energies for
five sets of inhibitors. Our results are useful for selecting proper
force field and ligand charges for binding free energy calculation
based on relatively short MD simulations (≤10 ns).
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