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Intrinsic Reaction Kinetics of the Taq polymerase 

Chaoran Jing, Sudha Moorthy, Karthikeyan Marimuthu, and Raj Chakrabarti
Assumptions of extension kinetics MM model

Equation (10) below describes the steady state approximation, which is used in the MM derivation of (5):
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This assumption could be validated through solution of the model with trial values of the on/off rate constants k2 and k-2, that it is a common result in MM kinetics assuming that substrate (nucleotide) concentration is sufficiently high (as it typically is in,e.g., PCR reactions). 
Therefore we have:
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As long as (11) holds, there is limited formation of the final reaction product E.Dn. The time over which (11) holds (during which the initial rate measurements must be made) can be investigated through the use of a full “state space
” model of the extension  reaction network, but is self-evident for longer sequences and short measurement times. In the current work, the validity of (11) is apparent from the first-order kinetics observed in the experimental results, due to the fact that relation (4) is a first-order time invariant ode under these conditions. The time over which this steady state condition holds, and over which the reaction kinetics are first order in the substrate, is longer for extension reactions than for most single substrate enzymatic reactions.

MM formulation for extension without S1,S2 notation 
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Standard ordered bireactants MM model

Reaction scheme (1) assumes the rate of formation of Dn in reaction scheme (2) is negligible during the time of initial rate measurement, i.e.,  
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.  By contrast, in a general ordered bireactants model [ref]
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equation (4) is replaced by 
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where 
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since  
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If reaction scheme  (12) is changed to 
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for which the MM kinetic derivation of initial rates is analogous to that for reaction scheme 1, then KM,1([S2]) in eqn (13)  becomes Keq,1, resulting in an expression for the initial rate analogous to that for reaction scheme (1). 

Full derivation of standard ordered bireactants model
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Derivation of equation (3)
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which follows from the conservation of number of molecules of 
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Via use of state space matrix:
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which follows from the conservation of number of molecules, or equivalently the transition rate property of the matrix A’.

Taq Reaction Rates (Km, Vmax, and kcat): Michaelis Menten Kinetics. 

 
The single standed 80-mer template (47.5% GC) was primed by using 7 molar excess of its 17-mer forward primer (88% GC) in 1x Taq buffer (20 mM Tris-HCl, 50 mM KCl) containing 2mM MgCl2, following the same procedure used for making the M13mp18 DNA/(-40) M13 Universal primer as described above.  Studies of the Michaelis Menten reaction kinetics for taq was done on this primed 80-mer DNA and its at six temperatures – 37 oC, 45 oC, 55 oC, 65 oC, 70 oC and 75 oC. 

Reactions at each temperature were done using eight different concentrations of the 80-mer template – 0.5, 1.0, 1.5, 3.0, 5.0, 10, 15, 20nM  -- and keeping the other components except for the primer fixed at dNTPs 200μM and 0.2U of taq in 20μl tubes. Activity measurements, namely measurement of dNTP incorporated  in each experiment were done following the same procedures described above. As a first step activities were measured as pmols of dNTP added by 0.2U enzyme in 0.25, 0.5, 0.75, 1, 1.5, 2, 5, and 10 minutes at each template concentration at each temperature. The pmols of dNTP incorporated at each temperature and for each concentration were then plotted against time and the initial rate of the reactions at each temperature and each concentration were determined from the linear portion of the curve during the initial periods. The initial rates of each individual reaction were plotted against primed template concentration and fitted to the following equation using the prismtm software. 

V = Vmax [S]/(Km = [S])  = kcat[E] [S]/(Km + [S])

Where V is the initial rate, [S] is the concentration of the substrate; Vmax is the maximum reaction rate achieved by the system at maximum (saturating) concentration of the substrate; [E] is the enzyme concentration; Km is the Michaelis-Menten constant, namely, the concentration of the substrate at which the reaction rate V is half of Vmax; and kcat is the turnover number, namely, the number of substrate molecules converted to product per enzyme molecule per second. In the present case kcat was expressed as the number of nucleotides (nts) incorporated per enzyme molecule per second

Figure S1 shows the Michaelis-Menten plots of the activity of the taq polymerse at different temperatures under excess dNTP conditions.. The template used was the 80-mer synthetic ssDNA containing an average of 47.5% GC yet with a 17-mer segment with 88% GC at the 3’end. The primer was a 17-mer oligonucleotide with 88%GC and 80 oC Tm. Both the template and the primer were tested to be free of secondary structures (see Discussion). The individual points in the curves were obtained from time course experiments at each template concentration at each temperature (results not shown). The RFU values from Figure S1 were converted into nmols of dNTP incorporated from the calibration curve (Fig 2) and are shown on the right side of the graph. The kinetic parameters calculated from Figure S1 are tabulated in Table S1.  
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Fig S1. Intrinsic Michaelis-Menten plots of taq polymerase activity under excess dNTP conditions using. The template was a 80-mer synthetic DNA (47.5% GC) and the primer, a 17-mer oligonucleotide with 88%GC (tm 80 oC). The primer was used in 7 fold molar excess relative to the template. Both the template and the primers were designed and tested to be free of secondary structures.  

Table S1. Intrinsic Michaelis-Menten Kinetic Parameters of the taq polymerase .  
	Parameter
	Units
	37 oC
	45 oC
	55 oC
	65 oC
	70 oC
	75 oC

	Vmax
	nmols dNTP incorptd/sec. 
	3x10-5
	18x10-5
	29x10-5
	70x10-5
	99x10-5
	81x10-5

	Km
	nM
	1.3
	10.5
	5.3
	8.9
	11.6
	10.2

	Vmax/Km
	Extension efficiency
	2.3 x 10-5
	1.7x 10-5
	5.5x 10-5
	7.9x 10-5
	8.5x 10-5
	7.9x 10-5

	kcat
(turnover number)
	ntps/sec.
	4
	25
	40
	96
	137
	111

	kcat as % of kcat at 70 oC
	Percentage
	3%
	18%
	29%
	70%
	100%
	81%


 Our results also indicate that the intrinsic Km of taq changes with temperature, varying between 1.3 nM to 11.6 nM, the lowest value being exhibited at 37 oC and the highest at 70 oC (Table 2 and Fig 5) as against the reported value of 1.4 nM at 72 oC (see above).  Since Km indicates affinity of the enzyme for a substrate, the lower the value higher being the affinity, our values indicate that taq has the highest affinity for the substrate at lowest temperature in the temperature range (37 oC – 75 oC) we studied. This counter-intuitive result suggests that activity and substrate affinity are not totally coupled to one another. This contention is supported by a 2003 study by Datta and LiCata, who showed that taq binds with high affinity down to 5 oC but their data showed the binding affinity maximizing at 40-50 oC (Datta and LiCata 2003) and not at 37 oC or lower. The differences between our observation and the Datta and LiCata’s, as to the temperature of maximum affinity, might lie in composition of our medium, our data being generated in the presence of large excess of dNTPs, while the Datta and LiCata’s data were generated in the absence of dNTPs, which are co-substrates for the extension reactions. 

The divergence between temperature of maximum DNA affinity (37 oC or 40-50 oC) and maximum activity (70 oC) in taq also begs a theoretical explanation. In two purely theoretical papers on enzyme-design and enzyme-designability, we showed, using over a dozed common enzymes (that are active at ambient temperatures), that their activities matched the ground state binding configuration of their substrates to the active site sequences (Chakrabarti, Klibanov and Friesner 2005a and 2005b). We concluded from this study that normal enzymes bind maximally to ground state configurations of their substrates but their structures also have enough flexibility to stabilize the corresponding transition states. In case of thermostable and thermoactive enzymes we propose that binding to the ground states of the substrates remains high at low temperatures but unless the temperature is increased the enzyme does not develop adequate flexibility to accommodate the substrates’ transition states, which alone can determine the ultimate reaction rates. Thus it is the balance between the enzyme’s affinity for its substrate and its flexibility that ultimately determines its activity at any particular temperature. The temperature at which the enzyme shows maximum turnover number (kcat) and maximum efficiency (Vmax/Km), is the same (70 oC) in our case (i.e. with taq) but the exact parallelism does not seem to exist at lower temperatures. This means that the enzyme’s affinity for the DNA substrate and its flexibility are not symmetrically counter-balanced at all temperatures. 

Simulation and robustness analysis

Simulation methods

By omitting the intermediate E.Di.N 
from  reaction schemes (1,2) and modeling each nucleotide addition step as a second order reaction with the same apparent rate constant kcat/Kn, we obtain a simpler model that can be used to predict the concentrations of partially extended DNA species at any time: 
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The enzyme binding/dissociation steps have also been omitted for the purpose of simplicity in the modeling, given that accurate estimates of the on-off rates k1,k-1 are not available. 


The time evolution of all the enzyme-template complexes E.Di can be predicted via a so-called state space model for the extension reaction network, assuming that the initial concentrations of all 
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 is 0. Under the conditions of significant nucleotide excess common in PCR, pseudo-first order kinetics are valid and the system (7) can be modeled as a linear system of ordinary differential equations
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Need to decompose in order to exponentiate; characteristic polynomial of A
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Roots of characteristic eqn 

Transition rate property: 
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Degenerate non-Hermitian; defective equation
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Generalized eigenvectors/Jordan decomposition JCF
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where the 
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 are obtained by solving a recursive system of linear equations through so-called generalized eigenroutines.   
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exp(At) in terms of Jordan decomposition
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Representation in terms of \pi + \sum_i v_iw_i^T…
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Convenient representation in terms of \tilde x(t); expressions for each \tilde x_i(t); reln of \tilde x_i’s to x_j’s above
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Small time approximation – first order model

Expression for extension time, \epsilon << 1, in terms of D(t)
In particular, given that it is possible to measure 
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 through the total fluorescence of all double stranded nucleotides, one can compare the kinetic model predictions to the laboratory measurements of this quantity:
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Expansion of above expression in terms of x(t) above
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Numerical integration of the odes corresponding to reaction scheme (7) was used to simulate the dynamics of extension under conditions where the pseudo-first order approximation does not hold. Kapral et al [ref] provided a solution to a master equation formulation of polymerase extension that is valid under these conditions
, but the state space formulation above is preferable under conditions of nucleotide excess (common in PCR applications), since it is amenable to robustness analysis wherein the effects of uncertainty in the apparent rate constant kcat/Kn on model predictions can be quantified. 
Robustness analysis

E[\sum_i=0^n I x_i(t)]  and expansion in power series
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Expressions for E of powers of \lambda=-kcat/Kn (from qc paper)
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Simulation of Extension

The ultimate goal of predicting the extension product distribution via the state space model is to compute the concentration of fully extended DNA product at any temperature, so as to be able to compute extension time. In order to simplify the experimental measurements required to validate the state space model, we consider here the validation of equation (9) using the experimentally estimated values of 
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a) Comparison of experimental and model-predicted 
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b) Comparison of the experimental and model-predicted rates of change 
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 of the above measurable quantity.

In either case, we are interested in measurement times 
where the final DNA product is being formed at a substantial rate. At these times, time-invariant first order kinetics do not apply, since 
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 in equation (4), such that state space solution (9) is required to predict the values of the observable quantities.  

In PCR reactions, nucleotide concentrations are often sufficiently high throughout the extension step to justify a pseudo-first order model where 
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. Thus, in contrast to the experimental conditions we used to estimate 
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.
With the values of
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obtained in this work, it is possible to experimentally estimate 
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where we have used 
(differentiating eqn (9) in the notation of the state space model)
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which also follows from (4) since 
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, and where 
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 is calculated using the value of Keq,1. Thus, in principle, approach b) would allow direct comparison of model predictions with experimental estimates of 
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.  However, these measurements are more prone to error
 than those of a), and they rely on the uncertain parameters 
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and Keq,1. Moreover, in the context of PCR reactions, the species concentrations are typically not amenable to accurate online estimation of 
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 using this approach. Hence we focus on approach a), comparing to the result in equation (**).

Robustness Analysis


Kinetic model presented, along with temperature-dependent (indicating more data points could be obtained if desired) / independent (justify based on standard errors above) uncertainty model for the rate constants, can be used to predict moments of fully extended DNA product concentration at any time.  
Here we consider only the mean and variance of the total concentration of double stranded nucleotides 
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, given the uncertainty in experimental estimates of 
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�Consider separating final eqn with rate constant kcat’/Kn. If  the simulation methods are included, the state space model is already introduced in eqn 5


�Optional. Consider two options: a) numerical simulation possibly w a variable temperature protocol (shorter, but someone must run code); original robustness analysis formulation is only relevant here; text commentary on state space/kapral soln;  b) analytical state space soln and kapral soln. In latter case, do not provide many details of soln – simply provide general form of solution. May not show any comparison of experimental and theoretical results. 





The enzyme binding could be included in a linear state space model for an exact result that would apply in early (enzyme excess) or late (template excess, as here, as long as nucleotides in excess) cycles of PCR.  State space would then be 2n+1 dimensional rather than n dimensional (n=2 or 3 are appropriate examples); each Di can partake in just two reactions – E association, dissociation; see previous notes on combined linear annealing/extension.  Assumption of –slow- dissociation from all E.Di (including E.SP) may need to be included, with associated state space result being an approximation. Error incurred by neglecting enzyme dissociation must be assessed in future extension time calculations.








�Note that omitting the intermediate  will result in somewhat different dynamics due to the fact that the enzyme binding equilibrium will not be shifted by the formation of the intermediate, according to the arguments given above. 


� EMBED Equation.DSMT4  ���


can be used to check the validity of this assumption. Please do this and let me know what the total concentration of all intermediates is under our assay conditions.


�Intermediate could be included in a linear model, but this may make an analytical solution impossible due to reverse reactions.


�Enzyme dissociation during extension may be related to polymerase processivity. CJ please look into processivity  and comment.


�See BP paper draft


�





To be included only if simulation methods are included.





There is only a single rate constant in the model, so the originally written section is not necessary





May insert robustness analysis based on  total DNA concentration








� 


Optional. Show results of simulation or analytical soln (see Methods). 





- Paper will be too long with much state space solution content; may show state equations for the full bireactants system along with those for reduced system, briefly indicate properties of soln. enzyme binding will definitely alter product distribution





- issues with putting current approach to state space soln in this paper: a) omission of enzyme binding, the effect of which depends on magnitudes of rate constants; b) assumption that kcat/kn is the same for all steps, all intermediate concentrations being constant, which is clearly impossible, and the time-dependent effect of which must be checked c) associated issues w robustness analysis





�Sampling times could be recommended either based on the model or based on experimental trials


�If these conditions are not used, we must use numerical simulations to make the predictions. CJ please comment.


�If enzyme dissociation is not modeled; omit  if modeling enzyme binding/dissociation


� CJ please comment: are these measurements inaccurate without a sufficiently large number of measurements to obtain the slope. Would be obtained from fitting to a non first-order model. Would the required reaction conditions decrease  signal to noise due to background fluorescence? Would  the signal to noise during PCR cycles be too low to use this method to obtain the final DNA product concentration? If not, we may portray this as another application of our experimental work, since it could be used in PCR without model simulations.





�RC will determine whether required.  





May show results of temperature-dependent robustness analysis of total DNA concentration (optional), if we can get experimental data for this.





May show results of temperature-dependent robustness analysis of fully extended DNA concentration (optional), if we can get experimental data for this (harder).





Due to assumptions above in state space model, there are some issues with robustness analysis
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