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SUMMARY

The mitochondrial sirtuin SIRT3 regulates metabolic
homeostasis during fasting and calorie restriction.
We identified mitochondrial 3-hydroxy-3-methylglu-
taryl CoA synthase 2 (HMGCS2) as an acetylated
protein and apossible target of SIRT3 in aproteomics
survey in hepatic mitochondria from Sirt3�/�

(SIRT3KO) mice. HMGCS2 is the rate-limiting step
in b-hydroxybutyrate synthesis and is hyperacety-
lated at lysines 310, 447, and 473 in the absence
of SIRT3. HMGCS2 is deacetylated by SIRT3 in
response to fasting in wild-type mice, but not in
SIRT3KO mice. HMGCS2 is deacetylated in vitro
when incubated with SIRT3 and in vivo by overex-
pression of SIRT3. Deacetylation of HMGCS2 lysines
310, 447, and 473 by incubation with wild-type SIRT3
or by mutation to arginine enhances its enzymatic
activity. Molecular dynamics simulations show that
in silico deacetylation of these three lysines causes
conformational changes of HMGCS2 near the active
site. Mice lacking SIRT3 show decreased b-hydroxy-
butyrate levels during fasting. Our findings show
SIRT3 regulates ketone body production during fast-
ing and provide molecular insight into how protein
acetylation can regulate enzymatic activity.

INTRODUCTION

Organisms rely on adaptive metabolic mechanisms to maintain

energy homeostasis under low nutrient conditions. In the transi-
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tion from the fed to the fasted state, carbohydrate utilization and

fatty acid synthesis cease in the liver, and fatty acid oxidation

and ketogenesis are induced (McGarry and Foster, 1980).

Acetyl-CoA generated from fatty acid oxidation is diverted

away from the tricarboxylic acid (TCA) cycle and converted

into acetoacetate, b-hydroxybutyrate, and acetone (ketone

bodies) through ketogenesis in the mitochondria (Laffel, 1999).

Specific tissues, such as the brain, consume acetoacetate and

b-hydroxybutyrate to spare glucosewhen glucose levels are low.

b-hydroxybutyrate production is regulated by the enzyme

3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) in the

mitochondria. HMGCS2 catalyzes the rate-limiting conversion

of acetoacetyl-CoA and acetyl-CoA into 3-hydroxy-3-methyl-

glutaryl-CoA (HMG-CoA), which is further converted into acetoa-

cetate by mitochondrial HMG-CoA lyase (Hegardt, 1999).

Acetoacetate is finally converted into b-hydroxybutyrate by

b-hydroxybutyrate dehydrogenase. Ketone body production is

regulated by HMGCS2 viamultiple signals from the overall meta-

bolic state of the organism. Ketogenesis is activated during fast-

ing, which upregulates HMGCS2 gene expression by increases

in glucagon and cyclic-AMP (for a comprehensive review, see

Hegardt, 1999). At the protein level, succinyl-CoA regulates

HMGCS2 directly by binding to and competitively inhibiting the

active site (Quant et al., 1990). Additionally, HMGCS2 is palmi-

toylated, a posttranslational modification predicted to regulate

enzymatic activity (Kostiuk et al., 2008).

Lysine acetylation, another posttranslational modification,

regulates multiple metabolic pathways in bacteria (Zhao et al.,

2010) and in human liver cells (Wang et al., 2010). The mitochon-

drial sirtuin SIRT3 is a mitochondrial deacetylase and is

emerging as an important regulator protein acetylation and

metabolic regulation during fasting. SIRT3 expression is

enhanced during fasting, deacetylates long-chain acyl-CoA

dehydrogenase (LCAD), and increases fatty acid oxidation in
Inc.
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Figure 1. SIRT3 Regulates the Acetylation

Level of HMGCS2

(A) Liver extracts from fed or fasted (24 hr) WT and

SIRT3KO mice were immunoprecipitated with an

HMGCS2 antiserum and analyzed by western

blotting with antisera specific for acetyllysine;

integrated density values were calculated and

are shown relative to WT mice; data are repre-

sented in arbitrary units (AU) ± SEM, n = 3/condi-

tion; *p < 0.05.

(B) Recombinant HMGCS2 expressed in E. coli

was incubated in vitro with recombinant SIRT3 or

catalytically inactive SIRT3-H248Y in the presence

or absence of nicotinamide, and the HMGCS2

acetylation status was assessed.

(C) Expression vectors for WT SIRT3, catalytically

inactive SIRT3-H248Y, SIRT4, or SIRT5 were

cotransfected into HEK293 cells with expression

vectors for FLAG-tagged HMGCS2, and the levels

of HMGCS2 acetylation were assessed.
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the liver (Hirschey et al., 2010). In extrahepatic tissue, SIRT3 also

deacetylates and activates mitochondrial acetylCoA synthase 2

(AceCS2) (Hallows et al., 2006; Schwer et al., 2006), an enzyme

required in the fasting response (Sakakibara et al., 2009). Addi-

tionally, SIRT3 deacetylates a subunit of the electron transport

chain and regulates ATP production (Ahn et al., 2008). In this

study, we identify HMGCS2 as a substrate of SIRT3, further sup-

porting a role for SIRT3 in adaptive response to fasting.

RESULTS

SIRT3 Regulates the Acetylation of HMGCS2
To identify possible SIRT3 targets, we purified hepaticmitochon-

dria from Sirt3�/� (SIRT3KO) mice, subjected mitochondrial

matrix lysates to trypsin proteolytic digestion and immunopre-

cipitated this peptide mix with an anti-acetyllysine antiserum.

The acetyllysine-containing peptides were eluted with dilute

acid and analyzed by nanoflow liquid chromatography-tandem

mass spectrometry (LC-MS/MS) on a hybrid linear ion-trap Four-

ier transform mass spectrometer. HMGCS2 was identified as

a possible substrate of SIRT3.

To confirm that HMGCS2 was acetylated in SIRT3KO mice

and to assess the possibility that SIRT3 regulates the acetylation

of HMGCS2, we probed the acetylation levels of endogenous

HMGCS2 under fed and fasted conditions. HMGCS2 was

immunoprecipitated with an antiserum specific for HMGCS2

from wild-type (WT) and SIRT3KO mouse liver mitochondria

and analyzed by western blotting with an anti-acetyllysine anti-

serum. In the fed state, hepatic HMGCS2 was acetylated at

a basal level (Figure 1A). However, after 24 hr of fasting, expres-

sion of SIRT3 protein is upregulated (Hirschey et al., 2010), and

acetylation levels of HMGCS2 were reduced by 58% in WT

mice (Figure 1A). In contrast, HMGCS2 was hyperacetylated

under basal and fasting conditions in SIRT3KO mice (72% and

64% increase in acetylation compared to WT, respectively).

These observations are consistent with a model in which

increased SIRT3 expression during fasting leads to the deacety-

lation of HMGCS2.

To measure the ability of SIRT3 to directly deacetylate

HMGCS2, recombinant HMGCS2 was purified after overexpres-
Cell M
sion in Escherichia coli and incubated with recombinant WT

SIRT3 or a catalytically inactive SIRT3 mutant (H248Y). Changes

in levels of acetylation of HMGCS2 were measured by western

blotting with an anti-acetyllysine antibody. SIRT3, but not cata-

lytically inactive SIRT3-H248Y, deacetylated HMGCS2 in vitro

(Figure 1B).

To further confirm the role of SIRT3 in regulating the acetyla-

tion of HMGCS2, expression vectors encoding FLAG-tagged

HMGCS2 were cotransfected with expression vectors for

SIRT3, catalytically inactive SIRT3-H248Y mutant, SIRT4, or

SIRT5 (HA-tagged) into HEK293 cells. HMGCS2 acetylation

levels were measured after immunoprecipitation (anti-FLAG)

and western blotting with an anti-acetyllysine antiserum.

We found SIRT3, but not catalytically inactive SIRT3-H248Y,

SIRT4, or SIRT5, deacetylated HMGCS2 (34% reduction

compared to WT, Figure 1C). These data show SIRT3 mediates

the deacetylation of HMGCS2 in vivo and in vitro.

Three Acetylated Lysines Regulate HMGCS2 Activity
To characterize the sites of acetylation regulated by SIRT3,

HMGCS2 was further analyzed by MS. Acetylated peptides

were immunoprecipitated from isolated mitochondria from WT

and SIRT3KO mice, and semiquantitative MS data analysis

was performed. Eleven acetylation sites were identified

in hepatic murine HMGCS2 (see Figure S1 available online).

Nine of those sites are conserved between mouse and human

(Figure 2A and Figure S1). Three of the sites, K310, K447, and

K473, were significantly hyperacetylated in SIRT3KO mice

(Figure 2B).

To test the biological significance of HMGCS2 acetylation at

these three sites, we mutated the three lysines targeted by

SIRT3 (K310R, K447R, K473R [HMGCS2-3KR]) into arginines.

HMGCS2-3KR was expressed in HEK293 cells and probed for

acetylation by immunoblotting with anti-acetyllysine antiserum

in comparison to WT. Since arginines cannot be acetylated like

lysines and conserve the positive charge of the lysine residues,

the 3KR mutant represents a constitutively unacetylated form

of the protein. The triple point mutation of HMGCS2-3KR had

significantly less acetylation than WT HMGCS2 (Figure 2C),

demonstrating these three lysines are major sites of acetylation.
etabolism 12, 654–661, December 1, 2010 ª2010 Elsevier Inc. 655



Figure 2. HMGCS2 Acetylation at Lysines 310, 447, and 473 Regulate
Activity

(A) Sites of HMGCS2 acetylation identified by mass spectrometry of purified

mitochondria from WT and SIRT3KO mice.

(B) Differential acetylation fold values for HMGCS2 acetylated lysines fromWT

and SIRT3KO hepatic mouse mitochondria compared to a separate standard

mouse reference.

(C) Expression vectors for WT HMGCS2 were transfected into HEK293 cells

with an empty vector control; SIRT3-HA; SIRT3-H248Y-HA; pSicoRMS2

shSIRT3; or HMGCS2-K310, -447, -473R (3KR), and the levels of acetylation

were assessed.

(D and E) Steady-state kinetic analysis of HMGCS2 activity; rates of HMGCS2

activity were determined as a function of (acetyl-CoA), as measured by DTNB

detection of CoASH; 1 unit = 1 mmol substrate converted to product per
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To measure the effect of HMGCS2 acetylation on enzymatic

activity, we purified HMGCS2. An expression vector for

HMGCS2 was cotransfected in HEK293 with SIRT3 expression

vectors (WT or catalytically inactive) or with an shRNA targeting

SIRT3. An expression vector for HMGCS2-3KR was also trans-

fected separately. WT and mutated HMGCS2 proteins were

immunoprecipitated (anti-FLAG), and their enzymatic activity

was measured. A steady-state kinetic analysis of HMGCS2

activity was performed, and the initial rates of CoA formation

were measured as a function of acetyl-CoA concentration. The

resulting saturation curves were fitted to the Michaelis-Menten

equation and the parameters compared among the various

HMGCS2 preparations. When HMGCS2 was coexpressed

with WT SIRT3, we observed a reduction in acetylation and

a 125%–165% increase in Vmax, compared to control HMGCS2

coexpressed with an empty vector or coexpressed with catalyt-

ically inactive SIRT3, respectively (Figures 2D and 2E). However,

no significant changes were observed in Km values (Figures 2D

and 2E). Additionally, when HMGCS2 was cotransfected with

an shRNA targeting SIRT3, HMGCS2 became hyperacetylated

(Figure 2C) and displayed reduced activity (43% reduction in

Vmax compared to HMGCS2 cotransfected with an empty vector

control; Figures 2D and 2E). Furthermore, constitutively unacety-

lated HMGCS2-3KR had reduced acetylation and increased

enzymatic activity (109% increase in Vmax compared to

HMGCS2 cotransfected with an empty vector control), similar

to HMGCS2 cotransfected with WT SIRT3 (Figures 2D and 2E).

These results indicate that the acetylation state of HMGCS2

directly correlates with its enzymatic activity. Since K310,

K447, and K473 represent the primary acetylation sites of

HMGCS2 that are regulated by SIRT3, these observations are

consistent with the model that SIRT3 regulates HMGCS2 enzy-

matic activity via the deacetylation of these residues in vivo.

Lysine Deacetylation Induces HMGCS2 Conformational
Changes
To further investigate how changes in the acetylation level of

HMGCS2 modulate enzymatic activity, we performed molecular

dynamics simulations on the unacetylated and triply acetylated

on K310, K447, and K473 mouse HMGCS2 (based on homology

to human HMGCS2 [Protein Data Bank (PDB) 2WYA]). The over-

all conformation of HMGCS2 was minimally perturbed by lysine

acetylation: approximately 80% of Ca atoms in acetylated

HMGCS2 deviated less than 2 Å from the unacetylated form (Fig-

ure 3A). However, significant differences in protein conformation

were observed in two distinct regions in triply acetylated

HMGCS2 compared to the unacetylated model.

First, acetylation affects HMGCS2 conformation around the

acetyl-CoA binding site (Figure 3C). When HMGCS2 was unac-

etylated, the 3-amino group of K310 formed ion pairs with both

the 30 phosphate of the acetyl-CoA (>90% of the time, during

the last 5 ns of five independent simulations [Figure S2]) and

aspartate residues (D351, D353) on helix 350–367 (Figures 4A

and 4B). However, these interactions were abrogated by acety-

lation, which eliminates the positive charge on the lysine side
minute, n = 2–3 measurements/sample, ± SEM, curve is representative of

two independent experiments.
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Figure 3. Lysine Deacetylation Affects HMGCS2 Conformation and

Dynamics

The tubes represent the average backbone conformation of the protein over

the last 5 ns of five independent simulations, and the widths of the tubes repre-

sent the fluctuations from the average conformation (i.e., thicker lines indicate

increased conformational flexibility).

(A) Overview of the entire structure for the unacetylated (yellow) and triply acet-

ylated (cyan) mouse HMGCS2. Acetyl-CoA in the model is shown using

spheres, whereas K310, K447, K473, and their acetylated forms are shown

as balls and sticks.

(B) Closer view of the region around a distal portion of the active site (the green

box in A). The two loops showing significant conformational and dynamical

changes are labeled L1 (residues 242–251) and L2 (residues 131–140).

(C) Closer view of the region around K310 (the red box in A).
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chain (Figures 4A and 4C). As a result, conformational changes

occur in the vicinity of K310. In particular, large changes were

observed in the conformation of helix 350–367 (Figure 3C), while

the helix containing the K310 acetylation site (residues 305–316)

was minimally perturbed. Specifically, the helix 350–367 moved

further away from the acetyl-CoA in the acetylated state

compared to the unacetylated state (Figures 3C and 4C). Similar

conformational changes occurred in simulations with only K310

acetylated (Figure S3).

A second region more distant from the active site also showed

significant changes in conformation and dynamics between the

acetylated and unacetylated proteins (Figure 3B). Two loops

(L1 [residues 242–251] and L2 [residues 131–140]) are in close

proximity to each other but not to K310, K447, or K473. Acety-

lated HMGCS2 showed larger fluctuations in loop 1 and a shift

in the average position of loop 2 compared to the unacetylated
Cell M
protein (Figure 3B). The changes in the conformation and

dynamics of these two loops propagated to the end of the active

site where the acetyl-CoA resides. Simulations with the enzyme

singly acetylated on K473, and to a lesser extent on K310 or

K447, showed similar changes in both loops, as well as helix

350–3677 (Figures S4 and S5).

Finally, the acetylation-induced changes around the acetyl-

CoA binding site discussed above affected the positioning of

critical catalytic residues. Histidine 301 (H301) and cysteine

166 (C166) are required for catalysis (Lowe and Tubbs, 1985).

The molecular dynamics simulations showed acetylation of

K310, K447, and K473 on HMGCS2 shifted the relative posi-

tioning of C166 to H301 and to acetyl-CoA (Figures 4E and 4F).

Misalignment of the catalytic residues may reduce the proba-

bility of H301 acting as a hydrogen bond acceptor for the nucle-

ophilic C166 and the probability of C166 attacking the acetyl

group of acetyl-CoA, because the average distances between

C166-H301 and C166-(acetyl-CoA) increased (Figure 4D).

Taken together, these simulations suggest that deacetylation

of K310, K447, and K473 causes changes in HMGCS2 that prop-

agate far beyond the sites of acetylation, and significantly affect

protein conformation, dynamics, and electrostatics near the

active site while minimally affecting the remainder of the protein.

b-Hydroxybutyrate Production Is Decreased
in SIRT3KO Mice
Because we observed lower levels of HMGCS2 enzymatic

activity in SIRT3KO mice and since HMGCS2 is the rate-limiting

step in b-hydroxybutyrate synthesis, we measured b-hydroxy-

butyrate production in WT and SIRT3KO mice. No differences

between WT and SIRT3KO mice in terms of plasma b-hydroxy-

butyrate were observed in the fed state (Hirschey et al., 2010).

However, under fasting conditions, b-hydroxybutyrate levels

were lower in 1-, 3-, and 12-month-old SIRT3KO mice than

in WT mice (Figure 5A). We also measured the level of plasma

b-hydroxybutyrylcarnitine, a mitochondrial intermediate derived

from b-hydroxybutyryl-CoA that reflects the pool of b-hydroxy-

butyrate within cells (An et al., 2004). b- hydroxybutyrylcarnitine

levels were 40% lower in 3-month-old SIRT3KO mice than in

WTmice (Figure 5B), further supporting lower levels of b-hydrox-

ybutyrate production during fasting in SIRT3KO mice.

DISCUSSION

Mitochondrial HMGCS2 catalyzes the conversion of acetoace-

tyl-CoA to HMG-CoA, the rate-limiting step in b-hydroxybutyrate

production. Here we show that mitochondrial HMGCS2 is acet-

ylated in the fed state and deacetylated by SIRT3 during fasting.

When HMGCS2 is hyperacetylated, such as in the SIRT3KO

mouse, the enzymatic activity is reduced, resulting in decreased

b-hydroxybutyrate synthesis. Deacetylation of HMGCS2 by

SIRT3 during fasting elevates HMGCS2 enzymatic activity and

b-hydroxybutyrate production (Figure 5C).

HMGCS2 proceeds via a ‘‘bi bi ping-pong’’ kinetic mechanism

in which acetyl-CoA binds to and forms a covalent acetyl-

enzyme intermediate (Lowe and Tubbs, 1985). The inter-

mediate undergoes a condensation reaction with the second

substrate, acetoacetyl-CoA, to form HMG-CoA that is ultimately

hydrolyzed from the enzyme. We observed a marked increase in
etabolism 12, 654–661, December 1, 2010 ª2010 Elsevier Inc. 657



Figure 4. Acetylation Shifts Catalytic Resi-

dues in the Acetyl-CoA Binding Region

(A) The percentage of time the distance between

the 30 phosphate atom of acetyl-CoA P(30) and
the nitrogen atom (N) in the sidechain of K310,

K306, K350, and K354 is smaller than 4.2 Å, during

which the phosphate group of acetyl-CoA and

lysine sidechain form salt bridge (Mandell et al.,

2007); comparing the unacetylated (yellow) and

triply acetylated (cyan) HMGCS2; data extracted

from the last 5 ns of each simulation and averaged

over five independent simulations for either state

of HMGCS2.

(B) Representative snapshot image during a simu-

lation of the electrostatic network formed by K310,

K306, K350, K354, and the 30 phosphate group of

acetyl-CoA in unacetylated HMGCS2.

(C) Same as (B) for the triply acetylated (K310,

K447, K473) HMGCS2.

(D) The percentage of time the distance between

the catalytic cysteine (C166) and nearby histidine

(H301) (or acetyl-CoA) is smaller than 4.0 Å;

comparing the unacetylated (yellow) and triply

acetylated (cyan) HMGCS2; data extracted from

the last 5 ns of each simulation and averaged

over five independent simulations for either state

of HMGCS2.

(E) Representative snapshot image during a simu-

lation of the catalytic amino acids and the acetyl-

CoA in unacetylated HMGCS2.

(F) Same as (E) for the triply acetylated (K310,

K447, K473) HMGCS2.
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HMGCS2 Vmax in the unacetylated state, after deacetylation

by WT SIRT3 or in the constitutively unacetylated HMGCS2-

3KR mutant. Conversely, the Vmax of HMGCS2 was reduced

after SIRT3 knockdown, demonstrating that the acetylation

state of HMGCS2 directly influences catalytic Vmax. The forma-

tion of the acetyl-HMGCS2 substrate-enzyme intermediate at

C166 is proposed to be the rate-limiting step of the enzyme

(Miziorko and Lane, 1977). Thus we interpret the effect of acety-

lation on Vmax as reflecting this chemical step. We observed

no significant effect of acetylation on the Km value for acetyl-

CoA, suggesting that deacetylation does not directly affect

acetyl-CoA binding affinity to HMGCS2. Notably, the Km of

HMGCS2-3KR was significantly reduced, demonstrating that

the 3KR mutant does not perfectly mimic the unacetylated

HMGCS2.

Molecular dynamics simulations performed on the triply acet-

ylated and unacetylated HMGCS2 structures revealed a possible

mechanism of how acetylation regulates the Vmax of HMGCS2.

Acetylation of K310, K447, and K473 leads to substantial

changes in conformation and dynamics of the enzyme primarily

in two regions close to the active site, leaving the remainder of

the protein largely unchanged. Moreover, the conformational

changes were qualitatively similar when acetylating each lysine
658 Cell Metabolism 12, 654–661, December 1, 2010 ª2010 Elsevier Inc.
individually (Figures S3–S5) or all nine

acetylated lysines (Figure S6).

Due to the complexity of the reaction

mechanism, determining how these

conformational changes affect enzyme
kinetics with certainty is not possible. However, we predict that

acetylation regulates HMGCS2 enzymatic activity by altering

the local protein conformation near the acetyl-CoA catalytic

residues, consistent with our interpretation that the observed

reduction in Vmax represents a modulation of this chemical

step. Acetyl transfer from acetyl-CoA to C166 is the first step

in HMG-CoA formation. For this reaction to occur, H301 must

act as the H+-bond acceptor from C166, and thus an optimally

close distance between H301 and C166 is required. Similarly,

acetyl transfer from coenzyme A to the enzyme at C166 requires

that acetyl-CoA be positioned nearby C166. Acetylation of

HMGCS2 at K310, K447, and K473 increases the average

distance between H301-C166 and C166-(acetyl-CoA), which

could reduce the efficiency with which the active site cysteine

attacks the acetyl group of acetyl-CoA and initiates the reaction.

We hypothesize that deacetylation by SIRT3 reverses this

impairment and induces a change in protein conformation

to place these residues into a more favorable position for

catalysis.

The biological roles and structural mechanisms of protein

regulation by lysine acetylation remain less well understood

than those of posttranslational phosphorylation. However, lysine

acetylation changes the net charge of the lysine side chain and



Figure 5. b-Hydroxybutyrate Production Is Decreased in SIRT3KO

Mice

(A) b-Hydroxybutyrate (b-OHB) levels in SIRT3KO and WT mice at 1, 3, and

12 months of age after a 24 hr fast; n = 5–10 for each genotype ± SEM
d(Hirschey et al., 2010), *p < 0.05.

(B) Serum b-hydroxybutyrylcarnitine levels in SIRT3KO mice compared to WT

at 3 months of age after a 24 hr fast; n = 5 for each genotype ± SEM, **p < 0.01.

(C) Proposed model for regulation of HMGCS2 by acetylation and deacetyla-

tion by SIRT3.
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can thereby induce local changes in protein conformation or

affinity. Here, we present evidence for a mechanism whereby

lysine acetylation at distant sites can induce changes in the

conformation of the enzyme near the active site and changes

in enzymatic activity. Phosphorylation at amino acids distant

from the active site can effect conformational changes that

propagate between the sites (Johnson and Lewis, 2001; Nar-

ayanan and Jacobson, 2009). Similarly, protonation changes

on a histidine side chain in talin cause alterations in the confor-

mation and dynamics of the actin binding site approximately

40 Å away, thereby modulating binding affinity (Srivastava

et al., 2008). Molecular characterization of additional acetylated

enzymes will determine if deacetylation-induced conformational

change represents a general regulatory mechanism.

Recent reports implicate SIRT3 in the regulation of energy

homeostasis during nutrient deprivation. SIRT3 regulates fatty

acid catabolism (Hirschey et al., 2010) and acetate metabolism

(Hallows et al., 2006; Schwer et al., 2006), two metabolic path-

ways that are activated during fasting. Here, we report that

ketone body synthesis is regulated by SIRT3 during fasting.

SIRT3 has also been implicated in regulating metabolism during

calorie restriction (CR) (Shi et al., 2005). Since both fatty acid

oxidation and ketone body production also increase during

CR, we speculate that SIRT3 could regulate metabolism during

CR. Future studies will determine if SIRT3 plays a role or is

required for the increase in ketone bodies duringCRor ketogenic

diet feeding conditions, and possibly the associated beneficial

metabolic effects.
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EXPERIMENTAL PROCEDURES

Animal Measurements

Animal measurements were performed on IACUC-approved protocols.

Studies used WT and SIRT3KO 129Sv (as described in Lombard et al.,

2007) male 1-, 3-, or 12-month-old mice, maintained on a standard chow

diet (5053 PicoLab diet, Ralston Purina Company, St. Louis, MO). Mice were

sacrificed at 7:00 a.m. for fed mouse studies or transferred to a new cage

without food for 24 hr from 7:00 a.m. to 7:00 a.m. and then sacrificed for fasted

mouse studies. Concentration of b-hydroxybutyrate was determined using

a b-hydroxybutyrate detection kit (Stanbio Laboratory, Boerne, TX). For

b-hydroxylbutrylcarnitine measurements, hepatic proteins were precipitated

with methanol, and supernatants were dried, esterified with hot, acidic meth-

anol, and then analyzed by tandem MS (Quattro Micro, Waters Corporation,

Milford, MA). All acylcarnitines were assayed by adapting described methods

for analysis of amino acids in dried blood spots (Wu et al., 2004).

Cell Culture and Plasmid Construction

HEK293 cells were cultured in DMEM supplemented with 10% FCS. All

expression constructs were generated by standard PCR-based cloning strat-

egies, and all expression constructs were verified by DNA sequencing. The

human HMGCS2 coding sequence was PCR amplified from human full-length

Mammalian Gene Collection cDNA (GenBank accession number NM_005518;

obtained through Open Biosystems, Huntsville, AL) and cloned into the

pcDNA3.1+-derived vectors pcDNA-Flag or pcDNA-HA to yield HMGCS2

with a C-terminal Flag or hemagglutinin tag (Invitrogen, Carlsbad, CA). Human

SIRT3, SIRT4, and SIRT5 cDNA were also cloned into pcDNA-Flag or pcDNA-

HA. Recombinant expression vectors encoding mature human SIRT3 (amino

acids 102–399) were as described (Schwer et al., 2006). For recombinant

HMGCS2 expression plasmid, full-length human HMGCS2 was cloned into

pTrcHis2 vector. Expression and purification of recombinant proteins were

as described (Schwer et al., 2006). For shSIRT3 generation, a short 19-mer

hairpin corresponding to human SIRT3 (482-GGAGTGGCCTGTACAGCAA-

500) was cloned into pSicoRMS2 vector, a modified pSicoR (EF1alpha-

mCherry-T2A-Puro) (Ventura et al., 2004).

Computational Methods

System Preparation

The crystal structure of human HMGCS2 (PDB 2WYA) was used as a template

to build the homology model of mouse HMGCS2 with in-house software

(Protein Localization Optimization Program [PLOP; distributed as Prime by

Schrodinger LLC], Portland, OR). To study the role of lysine acetylation in regu-

lating the enzymatic activity ofmouseHMGCS2, simulations on six states were

performed: (1) the unacetylated state with all lysine residues unmodified; (2)

a triply acetylated state with only K310, K447, and K473 acetylated; (3) a singly

acetylated state with only K310 acetylated; (4) a singly acetylated state with

only K473 acetylated; (5) a singly acetylated state with only K447 acetylated;

and (6) a state with acetylation on nine lysine residues (K243, K306, K310,

K333, K350, K354, K437, K447, and K473). Each state initially was energy

minimized using PLOP (Zhu et al., 2007). The force field parameters for the

substrate (acetyl-coenzyme A) were obtained from R.E.DD.B. (Dupradeau

et al., 2008) using the version for Amber force field ff03 (Duan et al., 2003;

Lee and Duan, 2004). The partial charges for acetylated lysine were the

same as those in Table 1 of Liu and Duan (2008). The backbone torsion param-

eters of unmodified lysine in the Amber ff03 force field (Duan et al., 2003; Lee

and Duan, 2004) were used for the acetylated lysines.

Molecular Dynamics Simulations

Each of the six states of mouse HMGCS2 was placed in a water box with

a minimum 8 Å from any protein heavy atom to the edge of the box. Na+ coun-

terions were added to make the system electrically neutral. All of the molecular

dynamics simulations were performed with the Amber10 simulation package

(Case et al., 2008). The ff03 force field was used for protein and substrate

(Duan et al., 2003; Lee and Duan, 2004), and the TIP3P force field was used

for water (Jorgensen et al., 1983). A two-stage approach was used to energy

minimize the simulation systems, with a steepest descent algorithm followed

by a conjugate gradient method. In the first stage, the protein complex was

fixed, and only the water and ions were energyminimized. In the second stage,

the entire system was energy minimized. A 20 ps MD simulation at constant
etabolism 12, 654–661, December 1, 2010 ª2010 Elsevier Inc. 659
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volume with weak restraints on the protein complex was performed to heat the

system to 300 K, and Langevin dynamics was used to control the temperature

at a collision frequency of 1.0 ps�1. Then each system was simulated with

a time step of 2 fs at a constant temperature of 300K and a constant pressure

of 1 atm with a time constant of 1 ps. A cutoff of 12 Å was used for both van der

Waals and short-range electrostatic interactions. Long-range electrostatic

forces were treated with the particle mesh Ewald (PME) method (Darden

et al., 1993). For all simulations, the SHAKE algorithm (Ryckaert et al., 1977)

was used to constrain bond lengths. For each of the six states of HMGCS2,

four other independent simulations (at 300K and 1 atm) were also performed

with different initial velocities. Structures were taken every 100 ps of the first

400 ps of the simulations after the 20ps position restrained simulations.

Each simulation has a length of 11–20 ns. Statistical analyses were performed

using the last 5 ns of each simulation, during which the backbone root-mean-

square deviation (rmsd) was stable (Figure S2), and then averaged over the five

independent simulations.

Immunoblotting

Antibodies used were anti-mtHsp70 (Affinity Bioreagents, Neshanic Station,

NJ), anti-HMGCS2 (GenWay Biotech, San Diego, CA), anti-Flag M2 or rabbit

polyclonal anti-Flag (Sigma-Aldrich, St. Louis, MO), anti-HA (12CA5 and

3F10; Roche Diagnostics, Indianapolis, IN), acetylated-lysine polyclonal anti-

body (Cell Signaling Technology, Danvers, MA), and anti-c-myc (Santa Cruz

Biotechnology, Santa Cruz, CA). SIRT3 antiserum was raised as described

(Lombard et al., 2007). Immunoblots were developed with enhanced chemilu-

minescence (Amersham Pharmacia Biosciences, Piscataway, NJ) or West

SuperSignal reagent (Pierce, Rockford, IL).

Immunoprecipitation

Cells were lysed on ice in NP1 buffer (PBSwith 0.5%Nonidet P-40 and 0.2mM

PMSF) with protease inhibitor cocktail (Roche). Flag-tagged proteins were

immunoprecipitated and washed in NP1 buffer four times. For HMGCS2

activity assays, immunoprecipitated Flag-HMGCS2 preparations were eluted

with 0.5mg/ml Flag peptide and dialyzed with PBS/10% glycerol/0.1 mMDTT.

Immunoprecipitated HA-tagged sirtuins for deacetylation assays were

washed in NP1 buffer three times containing 500 mM NaCl and twice in sirtuin

deacetylase buffer (SDAC) (50 mM Tris$HCl [pH 9.0], 4 mM MgCl2, 50 mM

NaCl, 0.5 mM DTT).

In Vitro Assays

SIRT3 Deacetylation

Equimolar purified recombinant HMGCS2 and purified recombinant sirtuins

were incubated in SDAC buffer in the presence or absence of NAD+ (1 mM)

with trichostatin A (500 nM) for 3 hr at 30�C (Hirschey et al., 2009; Schwer

et al., 2006).

HMGCS2 Activity

HMGCS2 enzymatic activity was measured by monitoring the conversion of

acetyl-CoA and acetoacetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, as

measured by DTNB detection of CoASH (Andrew Skaff and Miziorko, 2010).

Assay mixtures contained 100 mM Tris-Cl (pH 8.0), 130 mM DTNB (A412 nm =

13.6 mM�1), 10–1400 mM acetyl-CoA, 10 mM acetoacetyl-CoA, and 1 mg of

enzyme in a total volume of 200 mL. Absorbance at 412 nm was recorded

over 4 min, reflecting linear rates for all enzymes. Data were fitted using

nonlinear regression to theMichaelis-Menten equation (R2 > 0.95) to determine

Km and Vmax. Each point represents the average of two or threemeasurements

at that concentration, with error bars reflecting the standard deviation of these

measurements. Curves are representative of two independent experiments.

A unit of enzyme activity is defined as the amount of enzyme that causes

1 mmol of substrate to be transformed into product per minute.

Mass Spectrometry

MS analysis was performed on a 7 Tesla LTQ-FT (Thermo Fisher Scientific,

Waltham, MA) connected to an Agilent 1100 nanoflow HPLC system (Agilent,

Santa Clara, CA) with a nanoelectrospray ion source (Proxeon Biosystems,

Cambridge, MA). Peptides were separated by reversed phase chromatog-

raphy with an in-house fused silica emitter (75 mm ID) packed with Reprosil-

Pur C18-AQ 3 mm reverse-phase material (Dr. Maisch GmbH). Data were

searched using Mascot (Matrix-Science, Boston, MA) against the mouse IPI
660 Cell Metabolism 12, 654–661, December 1, 2010 ª2010 Elsevier
database and analyzed with MSQuant (Mortensen et al., 2010) and MaxQuant

(Cox and Mann, 2008). Semiquantitative MS analyses were as described

(Rikova et al., 2007; Rush et al., 2005). Briefly, peptides containing acetylly-

sines were isolated directly from protease-digested (trypsin) mitochondrial

extracts fromWT and SIRT3KOmouse livers with an anti-acetyllysine-specific

antibody and were identified by tandem MS.

Statistical Analyses

Results are given as the mean ± standard error. Statistical analyses represent

a nonparametric Student’s t test, and null hypotheses were rejected at 0.05.
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Dupradeau, F.-Y., Cézard, C., Lelong, R., Stanislawiak, E., Pêcher, J.,
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