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Abstract 

A theoretical framework for prediction of the dynamic evolution of chemical species in DNA 

amplification reactions, for any specified sequence and operating conditions, is reported. Using 

the Polymerase Chain Reaction (PCR) as an example, we developed a sequence- and 

temperature-dependent kinetic model for DNA amplification using first principles biophysical 

modeling of DNA hybridization and polymerization. We compare this kinetic model with prior 

PCR models and discuss the features of our model that are essential for quantitative prediction of 

DNA amplification efficiency for arbitrary sequences and operating conditions. Using this 

model, the kinetics of PCR are analyzed. The ability of the model to distinguish between the 

dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. 

The kinetic model is solved for a typical PCR temperature protocol to motivate the need for 

optimization of the dynamic operating conditions of DNA amplification reactions. It is shown 

that amplification efficiency is affected by dynamic processes that are not accurately represented 

in simplified models of DNA amplification that are the basis of conventional temperature cycling 

protocols.  Based on this analysis, a modified temperature protocol that improves the PCR 

efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic 

framework to determine the optimal dynamic operating conditions of DNA amplification 

reactions, for any specified amplification objective, is discussed. 
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1. Introduction 

 

DNA amplification is the process of geometric growth of the number of double-stranded DNA 

(dsDNA) molecules in solution through repeated replication of single-stranded DNA (ssDNA) 

templates. Due to the universal need to amplify DNA for applications ranging from molecular 

cloning to DNA sequencing, such methods have arguably become the central technology of 

modern molecular biology. The polymerase chain reaction (PCR), the most common DNA 

amplification reaction, is a cyclic amplification process that can produce millions of copies of 

double-stranded DNA molecules starting from a single molecule. The traditional three-step PCR 

reaction cycle consists of (i) dsDNA denaturation, (ii) oligonucleotide primer annealing to the 

resulting ssDNAs, and (iii) polymerase-mediated extension steps to produce two dsDNA 

molecules. This cycle is repeated 20-30 times, resulting in geometric growth of the number of 

DNA molecules. The base of the exponent for geometric growth is termed the amplification 

efficiency of a cycle.  

 

Despite the fact that the notion of thermal cycling is based on a dynamic picture of DNA 

amplification (1), there are currently no models of DNA amplification kinetics that are capable 

of predicting the evolution of reaction products for general sequences and operating conditions. 

Without such a model, the optimal temperature cycling protocol for the reaction – which is 

sequence specific - cannot be computed, and reductions in cycle efficiency (either through 

decreased reaction yield or specificity compared to the theoretical maximum values) can occur. 

Due to geometric growth, reductions in the cycle efficiency can result in dramatically diminished 

efficiency of the overall reaction, and substantial efforts have hence been dedicated to improving 

the efficiency of DNA amplification reactions (2,3). 

 

In the absence of predictive models for DNA amplification, the operating conditions for PCR 

reactions are typically selected based on qualitative analysis of their kinetics and 

thermodynamics, given the desired amplification objective. Over the past two decades, many  

variants of DNA amplification have been invented based on the notions of DNA denaturation, 

annealing and polymerization, each tailored to a particular amplification objective. Each such 

reaction (which is typically assigned its own acronym) is based on a temperature cycling 



protocol determined through analysis of reaction thermodynamics and a qualitative analysis of 

kinetics. A simple example of a temperature cycling protocol that involves modifications to the 

conventional prescription is the use of two-step PCR cycles (4), wherein annealing and extension 

occur simultaneously at a properly chosen temperature.  

 

A general approach to kinetic modeling of DNA amplification has applications to the design of 

new types of amplification reactions, in addition to enhancement of existing reactions. In the 

language of systems engineering, the selection of the optimal trajectory of a manipulated input 

variable such as temperature is referred to as dynamic optimization or optimal control (5). This 

paper is concerned with the establishment of a foundation for the dynamic optimization of DNA 

amplification reactions, which can be used for the automated computation (rather than qualitative 

selection) of temperature cycling protocols. To date, quantitative sequence-dependent modeling 

of DNA amplification has been largely restricted to the thermodynamics of the reaction. Prior 

reports of kinetic models for PCR have proven inadequate for the purposes of dynamic PCR 

optimization. For example, Rychlik et al (6) developed an empirical equation to determine an 

optimal annealing temperature that maximizes the final DNA concentration. Using a 

probabilistic PCR kinetic model, Stolovitzky and Cecchi (7) developed a method to calculate the 

cycle efficiency for PCR quantification. Velikanov and Kapral (8) proposed a Markov process 

approach to optimize the extension step of PCR. Yang et al (9) discussed the effect of annealing 

temperature on the concentrations of different targets in a multiplex reaction and gave the 

temperature vs. concentration profile for all the targets. Though the above-developed approaches 

predict the PCR efficiency, they have several fundamental limitations. For example, Rychlik et 

al.’s model does not have a theoretical foundation for prediction of the optimal annealing 

temperature and their empirical correlation is purely based on a limited number of experiments. 

Stolovitzky and Cecchi’s (7) and Velikanov and Kapral’s (8) kinetic models did not account for 

the sequence dependence of amplification kinetics or were limited to a single step of the reaction.  

 

A so-called state space model is required for dynamic optimization of DNA amplification. State 

space models are systems of differential equations that, when solved, describe the dynamics of 

the system, along with algebraic constraints and specified parameters (e.g., rate parameters such 

as activation energies and pre exponential factors) whose values are either predicted based on 



first-principles theory, independently measured in offline experiments, or indirectly estimated 

through online measurement of observable quantities during the evolution of the system. Across 

the published literature, proposed state space models (10, 11, 12, 13, 14) give only poor 

estimates of the PCR amplification efficiencies. This is because no generalization has been made 

regarding the dependence of kinetic parameters on both i) the DNA sequence and ii) 

temperature. None of these kinetic models are both sequence- and temperature-dependent. It is 

quite evident from the nearest neighbor method, which can be used to calculate the DNA 

annealing reaction free energy, that the equilibrium constant of DNA hybridization is 

temperature and sequence dependent. Datta and Licata (15) reported temperature-dependent 

equilibrium dissociation constants for the enzyme binding reaction. Huang et al (16) and Innis et 

al (17) reported temperature-dependent enzyme extension reaction rates. Therefore, the kinetic 

parameters of the three steps of PCR are highly dependent on the sequence composition and 

temperature of the reaction. Accurate and computationally efficient sequence-dependent state 

space models, which are essential to solve such problems, require a combination of fundamental 

biophysical modeling with dynamical systems theory. This notion of sequence-dependent 

modeling of the kinetics of biochemical reaction networks, which has various applications in 

dynamical systems biology, is introduced here as one of the contributions of the present work. 

 

In this paper, we develop the first sequence-dependent kinetic model for PCR reactions that is 

suitable for engineering control, validating this state space model through comparison to 

experimental data. First principles models are essential for proper prediction of DNA kinetic rate 

parameters for any arbitrary DNA sequence. The model introduced herein is based on 

quantitative biophysical modeling of DNA melting, annealing, and polymerization, which 

together enable a mapping of a given DNA sequence and polymerase enzyme onto temperature-

dependent kinetic rate constants for the DNA amplification reaction. Such sequence-dependent 

modeling of amplification kinetics has been enabled, in part, by recent developments in the 

theory of DNA hybridization kinetics (18). One benefit of such complete state space models for 

PCR is the ability to achieve similar or enhanced amplification efficiencies and specificities in 

greatly reduced time, through the exploitation of dynamic processes – such as simultaneous 

annealing and extension - that are not represented in simplified models of DNA amplification, 

but which play a major role in determining the evolution of chemical species.  Prospects for the 



application of these sequence-dependent models in the formulation of optimal control problems 

that can enable the computation of optimal cycling strategies, for any specified objective, are 

discussed. 

2. Kinetic Model for PCR 

A kinetic model of PCR consists of kinetic models of melting, annealing, enzyme binding and 

extension reactions. In this work we have developed a sequence- and temperature dependent 

state space model for PCR and analyzed its kinetics. 

2.1 Annealing Kinetics 

Reaction R1 represents an annealing reaction between the single strands (S) and primers (P). 
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Marimuthu and Chakrabarti (18) developed a sequence and temperature dependent method to 

estimate the annealing reaction rate constants. Here we summarize their method that needs to be 

followed to estimate annealing rate constants. 

2.1.1. Estimation of annealing rate constants. 

1. Determine the overall Gibbs free energy and hence the equilibrium constant Kannealing for 

a given sequence at the chosen annealing temperature using the Nearest Neighbor model. 
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2. Determine the relaxation time, a characteristic time constant that determines the evolution 

of reaction coordinates toward equilibrium, at a chosen temperature using either one- or  

two-sided melting. Denoting by  the probability of i bases of the primer being hybridized, 

for a homogeneous sequence the master equation is that of a biased one-dimensional 

random walk with partially reflecting boundary conditions: 
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We briefly review the method of Marimuthu and Chakrabarti (18) for calculating the 

relaxation time of such systems, including the more general case of two-sided 

heteropolymer melting. 

 

o For the given primer length write the reaction mechanism; for example, for N = 2, 

 

o Obtain the values of the rate constants and other parameters as explained in 

Marimuthu and Chakrabarti (18) and form the following state space matrix based 

on the above reaction mechanism 
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o Calculate the Eigenvalues λi of A. 

o Calculate the relaxation time as per the following equation: 

1

max i

τ
λ

= −
 

3. Relaxation time for the reaction R1 in terms of kf and kr can be expressed as  

( )
1

f eq eq rk S P k
τ =

   + +   
 

[Seq] and [Peq] should be determined based on the initial concentrations of single 

strands and primers that are used to determine relaxation time in step 2. 

4. Solve the two equations in steps 1 and 3 to determine kf and kr. 

Fig. 1 shows the above procedure as a flowchart.  



 

Figure 1: Flowchart for the estimation of sequence and temperature dependent annealing 

rate constants. 



Using the above steps we have estimated the forward and reverse rate constants for a set of 

primers and the reaction parameters are given in Table 1. Arrhenius plots for the annealing rate 

constants kf and kr have been given in Fig. 2.  

Sequence (Ea/R)f 

(K-1) 

(Ea/R)r 

(K-1) 

(k0)f (k0)r Tm  

(0C) 

GCTAGCTGTAACTG -7385 46341 2×10-4 5×1063 41 

GTCTGCTGAAACTG -8202 45926 2×10-5 1063 44 

Table 1: Rate parameters of primers. Subscript f and r denotes forward and reverse rate 

constant, respectively. 

 

Figure 2. Arrhenius plot of the forward (kf)  and reverse (kr) rate constants for the primer 

set 1. 

From the melting curve (not shown) of the chosen primers it can be inferred that 100 % 

equilibrium conversion for reaction R1 can be achieved at any temperature less than 32 0C. A 

very low annealing temperature could form mismatched products; therefore, the minimum 

annealing temperature is fixed to be 32 0C.  This also reduces the range of the PCR operating 

temperatures, reducing the transition time between annealing and the other two steps of the PCR 

reaction.  

 



2.2 DNA Melting 
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DNA melting (R2) is the reverse reaction of DNA hybridization, of which annealing reaction R1 

is an example. The kinetics of short DNA melting can be modeled using the 'all or none' or 'two 

state' model (19, 20). Based on this model, a DNA is assumed to be either in a single stranded or 

double stranded state; this assumption is valid only when the number of base pairs is less than 50 

(21). Long DNA melting obeys co-operative melting, in which different regions of a DNA melt 

simultaneously in a different manner. The Poland-Scheraga (PS) model (22, 23, 24) can be used 

to predict this behavior and identify the different regions that can melt independently. However, 

to the best of our knowledge, the kinetics of long DNA melting has not been investigated. Mehra 

and Hu (10) assumed a rate constant that corresponds to the melting of a short DNA. Gevertz et 

al (11) and Stolovitzky  and Cecchi (7) assumed that DNA melting is always 100% efficient and 

neglected the melting step in the overall PCR model. Unlike the annealing step, where primer 

annealing, enzyme binding and extension reactions can occur simultaneously, in the melting step 

, only the melting reaction can occur due to very high temperature. Moreover, as long as the 

given DNA does not form any secondary structures, it can melt completely. iIn our numerical 

studies, we have hence also assumed that the DNA melting reaction is always 100% efficient..  

This approach allows us to simplify the treatment of the melting step; however, it does not 

consider the effect of template melting during the extension step at 72 0C which is moderately a 

high temperature at which a long DNA may melt. Furthermore, in applications like COLD PCR, 

the melting temperature is lower than the typical PCR DNA melting temperatures (25). In order 

to account for these factors, the temperature-dependent melting rate constants need to be 

estimated. Although we did not consider these effects in the numerical simulations of the present 

study, we present a method that can be used to model the kinetics of long DNA melting. 

2.2.1. Statistical Mechanical Model for the Kinetics of the Melting of a long DNA 

As mentioned above, long DNA molecules melts based on cooperative melting. Using the 

Poland-Scheraga (P-S) model, a given DNA sequence can be divided into 5 discrete domains: 1) 

Internal loops, 2) Pre-existing coils, 3) Expansion of loops, 4) Coalescence of neighboring loops, 



and 5) Ends. There are many numerical methods and software such as MELTSIM (26, 27, 28) 

developed to identify the aforementioned domains and solve P-S model for a given long DNA 

sequence. Once these domains are found, for each domain an overall stability constant is 

calculated based on the following equation. 
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In the above Eq. (1), σc is referred as a cooperativity parameter (26) and it is different from the 

nucleation parameter σ that has been discussed in annealing model. σc is a penalty to the 

statistical weight for melting of the domain due to the free energy cost of dissociating an internal 

base pair. Both σc and f(N) have been universally estimated and Blake et al (27) provided the 

expressions to calculate them. Each of the above regions melts independently based on the two-

sided melting theory (29). These regions can be identified and the overall stability constant can 

be estimated as explained above. With this information in hand, the relaxation time of melting of 

the overall DNA can be found as follows. 

2.2.2. Relaxation Time of a Long DNA 

As shown in Section 2.1, an exact state space model for the melting of each base pair in each 

domain can be formulated. Since we know all the domains based on the P-S model, now the state 

space systems of each domain can be connected to find the state space system of overall DNA 

melting. The state space matrix of each domain will be coupled to only one other block, and in 

the following way: assuming that domain i+1 melts after domain i, only the fully molten domain 

i / fully hybridized domain i+1 state will be coupled to all the fully molten domain i /single-base 

dissociated domain i+1 states. Based on the type of  domain, the state space system for each 

domain can be modeled using one-sided or two-sided melting theory (18). Once the state space 

matrix of the overall DNA melting is formulated, from the largest eigenvalue of the state space 

matrix, the relaxation time can be estimated. The following steps can hence be used to find the 

rate constants of long DNA melting. 

• Using MELTSIM, identify different domains for a given DNA sequence. 

• Order the domains based on their melting temperatures (ascending order). 



• Construct the state space matrices for each domain based on two-sided or one-sided 

melting theory, as explained in the Supporting Information. 

• Associate σ, the nucleation parameter, with individual states in the last block according to 

the method described in reference (18). 

• Diagonalize each block and rank order the eigenvalues of all blocks. 

• For each domain find the relaxation time using -1/max(λi). 

Compare all the relaxation times; the maximum value of the relaxation time is the relaxation 

time of the whole DNA sequence. One may then compute the forward and reverse rate constants 

for long DNA melting using the relaxation time and the overall stability constant of the 

sequence, as described in Section  2.1. 

 

2.3. Enzyme Binding and Extension Reaction Kinetics   

In the extension step, enzymatic addition of nucleotides converts the duplex primer-template 

complex (SP) into a complete dsDNA. Both deterministic as well as stochastic (8) approaches 

have been proposed to develop a model for the extension reaction. Velikanov and Karpal (8) 

presented the following chemical master equation (CME), a probabilistic description of the 

extension reaction system, together with its analytical solution: 

                                        ( ) ( ) ( )1 1, 1, ,l l l lP l t w P l t w P l t
t − → → +

∂ = − −
∂

                                           (2) 

where ( ),P l t denotes the probability distribution of the duplexes with l base pairs added through 

the extension reaction, and 1l lw − →  denotes the transition probability rate of nucleotide addition to 

the l-1 base pair duplex. 

Although the solution of the above CME can provide the time required to complete an extension 

reaction, this formulation is not useful in the present context because 

• It omits enzyme dissociation/processivity as one of its major drawbacks; hence it only 

applies to perfectly processive polymerases (see below for discussion of processivity).  

Since thermostable enzymes are not perfectly processive, it cannot be applied to PCR. 



• It cannot be integrated with the models for the other steps of PCR. Therefore, it is 

impossible to analyze annealing, enzyme binding and extension reactions simultaneously.  

Therefore, we consider an alternative approach with an appropriate reaction mechanism to 

develop a model for the enzyme binding and extension reactions. 

2.3.1. Reaction Mechanism  

   

 

 

 

 

 

 

 

 

 

Figure 3. A general reaction mechanism of Enzymatic Primer Extension reaction. (This 

figure has been reproduced from Brown et al. (35).) 

 

There are several reaction mechanisms proposed for the enzyme binding and extension reactions 

(31, 32, 33, 34) and Fig. 3 represents a general reaction mechanism (35). In step 1, enzyme binds 

with Di molecule to form a binary complex E.Di. In step 2, a deoxynucleoside triphosphate 

(dNTP) binds with E.Di to form a ternary complex, E.Di.dNTP, which undergoes a protein 

conformational change in step 3 and forms E'.Di.dNTP.  In step 4, the nucleotide is incorporated 

and a pyrophosphate molecule is released from Di, and as a result E’.Di+1.PPi is formed. 
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E'.Di+1.PPi undergoes a conformational change in step 5, leading to the formation of E.Di+1.PPi. 

In step 6, PPi is completely released from E.Di+1.PPi and E.Di+1 is formed. Finally the 

dissociation of E.Di+1 produces Di+1 and E. Besides these steps, there are parallel dissociation 

reactions represented by step 7 and 8 that may also occur. 

Kuchta et al (30), Patel et al (31), Brown and Suo (35), Capson et al (36), and Fiala et al (37) 

studied the extension reaction kinetics for DNA polymerase I Klenow, T7 DNA polymerase, S. 

solfataricus P2 DNA polymerase B1, T4 gene 43 protein, and S. solfataricus P2 DNA 

polymerase IV, respectively, at either 20 0C or 37 0C. Using their rate constant data, we simplify 

the above reaction mechanism. Step 6 is the last step of the reaction mechanism that produces 

E.Di+1. According to Patel et al (31), k6
e = 1000 s-1 and k-6

e = 0.5 (μM)-1 s-1. These rate constant 

values suggest that the association of E.Di+1 with PPi is essentially impossible given the PPi 

concentrations in typical DNA amplification reactions. In addition to this, comparing k-6 with k1 

(11 (μM)-1 s-1) and k2
e
 ( > 50 (μM)-1 s-1), it can be considered negligible. Hence, the final step 6 is 

irreversible with a rate constant k6
e. Step 3, 4 and 5, which are all a first order reversible 

reactions, represent the conformational change of a ternary complex. Their rate constants values 

are higher than k2
e (31), and the forward rate constants for each step are higher than the 

corresponding reverse rate constants (31). Hence, the overall dynamics are controlled by step 2, 

which forms a ternary complex, E.Di.dNTP, and the final step is irreversible. Thus, as proposed 

by Boosalis et al (32), Mendelman et al (33) and Huang et al (34), the above reaction mechanism 

can be represented using the simplified reaction schemes given by reaction scheme R3. 
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We now show how the kinetic parameters k1
e, k-1

e, kcat and KN = (k-2
e+kcat)/k2

e in this reaction 

scheme can be estimated for any polymerase using polymerase processivity and initial rate 

experiments. 

2.3.2. Single-hit conditions: 

Under so-called single hit conditions, enzyme concentrations are sufficiently low that the 

probability of re-association is approximately zero. Therefore, they do not allow enzyme re-



association. Hence enzyme-template association occurs only during the initial equilibration of 

enzyme with SP. Thus, the following reaction scheme for the addition of n base pairs is written: 
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Single hit conditions are used to estimate polymerase processivity parameters. . Processivity is 

defined as the expected number of nucleotides incorporated per DNA-enzyme binding event, and 

is discussed further below. 

 

2.3.3. Processivity of an enzyme 

 

Let i index the sequence positions on the template. In a Markov chain formulation of 

dissociation, the index i at which dissociation occurs is called the stopping index and is denoted 

ioff. Let p denote the conditional probability of the polymerase not dissociating at position i, 

given that it was bound to the template at position/time i-1. The probability of dissociation at 

position i is then  

                                                             ( ) ( ) 11 i
offp i p p −= −

                                                          (3)
 

p is called the microscopic processivity parameter. The expected position of dissociation of the 

polymerase (expected stopping index), called the processivity, can be written as 

1
[ ]

1offE i
p

=
−

 

[ ]offE i  is typically reported as the processivity instead of the microscopic processivity parameter. 

The above expression is derived for a template of infinite length. Usually, in processivity 

experiments long templates are used to estimate p. For finite length,  
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For heterogeneous templates, p will vary with position. From processivity experiments, one can 

obtain the p at each position since we will have  
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These equations can be used to solve uniquely for each pi. However, it is impractical to do 

processivity experiments for each new template. Hence, one can do processivity experiments on 

templates with different types of nearest neighbor motifs (including hairpins) for a given 

polymerase, and then these nearest neighbor processivity parameters can be used in modeling of 

the processivity for an arbitrary sequence.  

 

2.3.4. Relationship between Processivity and Enzyme binding/Extension rate constants. 

 

Now, at a fixed temperature, we seek a relationship between processivity of an enzyme and the 

rate constants of the reaction scheme R4. In order to do this, we write the state space model for 

the reaction scheme R4. We omit 
'

. catk
n nE D E D⎯⎯→ + from the state space model for simplicity 

as it does not affect equilibrium and we are not estimating the corresponding rate constant. Since 

the substrate, dNTP, is always in excess compared to enzyme, Michaelis-Menten (MM) kinetics 

is valid and hence the steady state assumption for the intermediate concentration is valid. 

Therefore,  
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where   

1
ek dt−  = conditional probability of transition from state 1.

ek
i iE D E D−⎯⎯→ + in time dt 

k dt  =  conditional probability of transition from state 1. .i iE D E D +→ in time dt. 

In a single molecule continuous time Markov chain formulation, Eq. (7) can be written in terms 

of the probability distribution of states  0 0., ,....
T

D E D ℘ ℘    instead of the vector of species 

concentrations.  
An equivalent master equation formulation is: 
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where ( ),i t℘  denotes the probability of the polymerase being in state i at time t. 

The equilibrium distribution of this master equation can be obtained by solving for the 

generalized eigenvectors of the state space system Eq. (7). It is found that this distribution has 

the form specified by Eq.(3) with ( ) ( , )off offp i p i t≡ = ∞  and the following value of the 

microscopic processivity parameter:  
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and Eq. (8) can be written  as follows in terms of processivity: 
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                                                    (9) 

As per Eq. (9), if cat

N

k

K
 and processivity of a polymerase are known at a specific temperature, it is 

possible to estimate k-1
e for any polymerase. Eq. (9) is valid under the approximations applied in 

the derivation of (R3). Moorthy et al ( S.Moorthy, K.Marimuthu, and R. Chakrabarti, 

unpublished data) carry out a comprehensive analysis of these approximations and consider more 

general models. For each such model, an equation for k-1 analogous to (R3) can be derived based 

on the associated single hit A matrix, in terms of processivity and other model parameters. 

Moorthy et al (S.Moorthy, K.Marimuthu, and R. Chakrabarti, unpublished data) estimated cat

N

k

K
 

for Taq polymerase at various temperatures based on a bireactants MM kinetics formulation. Fig. 

5c shows the temperature dependent extension rate constant cat

N

k

K
. In Eq. (9) k-1

e and cat

N

k

K
 are 

concentration independent terms and hence, the processivity offE i    or the conditional 

probability p depends on [N]. In order to use Eq. (9) to estimate k-1
e, [N] and offE i    should be 

consistent or one should use the value [N] at which offE i    is estimated. Wang et al (38) and 

Davidson et al (39) determined the value of offE i   at a specific temperature and nucleotide 



concentration. The following Table provides the values of offE i    and the conditions at which 

they were measured. 

Reference Temperature 

(0C) 

Nucleotide 

concentration [N] (μM) 
offE i    

Wang et al (36) 72 250 22 

Davidson et al (37) 60 800 50-80 

 

Table 2: Processivity of Taq polymerase 

 

Using the above values, kcat/KN and Eq. (9), we have estimated k-1
e at 60 0C and 72 0C, 

respectively. We have the k-1
e for S. solfataricus P2 DNA polymerase B1 (37) at 37 0C and we 

use the same value for Taq polymerase enzyme as their equilibrium constants are of the same 

order of magnitude. Thus, we can obtain estimates of k-1
e at three different temperatures and 

using these, an Arrhenius relationship is fitted as shown in Fig. 5b to estimate the temperature 

dependent dissociation rate constant k-1
e.  Fig. 4 explains the steps involved in enzyme binding 

and extension model parameter estimation.  



 

Figure 4: Estimation of enzyme binding and extension rate constants. 

 

 



 

(a)                                                                              (b) 

 

 

 

 

 

 

          (c) 

Figure 5: Temperature dependence of a) Enzyme dissociation rate constant; b) Enzyme 

binding rate constant; c) Extension reaction rate constant for Taq polymerase 

Equilibrium thermodynamic analysis for the enzyme binding reaction has been done extensively 

with Thermus aquaticus enzyme by Datta and LiCata (15). They estimated the temperature 

dependent equilibrium constant which is the ratio k1
e/k-1

e. Therefore,  based on the temperature 

dependence of k-1
e and Kbinding, k1

e has been estimated and its Arrhenius plot is shown in Fig. 5a.  
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3. Analysis of PCR Kinetics 

Using the kinetic model developed in Section 2, we seek an optimal temperature vs. time profile 

for DNA amplification. In order to do this, we first analyze the kinetic model in this Section to 

assess the importance of such simulations in making accurate predictions of the amplification 

efficiency of PCR reactions. We note that the conventional picture of PCR kinetics assumes a 

single reaction is rate-limiting for each step estimates reaction temperatures and times for each 

step based on this assumption without solving the associated state equations.  

  

Except for the annealing temperature, the reaction conditions are the same as the typical PCR 

conditions recommended, for example, by Invitrogen (40). Reactions R1, R2, R3 and R4 have 

been written for a simplex PCR reaction and they are given along with their state equations in  

Appendix A1 and A2. In Figure A.1, we have shown which rate constants are sequence and 

temperature dependent. We summarize the simulation results as follows (data not shown here). 

• If the ratio of single strand concentration to primer concentration (SP ratio) S0/P0 is <1, 

then the annealing reaction is nearly instantaneous. 

• If the SP ratio is close to 1, then there is a transient behavior in the evolution of S1P1. 

When the SP ratio is low, since the primer concentration is very high compared to the single 

strand concentration, the primer molecule easily binds to the single strand molecule and does not 

allow single strands to anneal to each other. On the other hand, when the SP ratio is 1, since the 

primer and single strand molecules are equal in concentration, there is a competition between 

them to anneal to their respective complementary sequences. Since the single strands participate 

in a two-way competition with both primers, they eventually lose in this competition. Thus, the 

annealing reaction is not the rate-limiting step during the early stages of PCR but it may become 

the rate limiting step towards the end of PCR.  

In PCR, study of the annealing reaction separately may be misleading in deriving conclusions 

about the optimal annealing time. From Section 2.3, it is evident that enzyme binding can occur 

at annealing temperatures. This can affect the annealing and hence the overall dynamics of the 

PCR.  Datta and LiCata's (15) experiments reveal that the Gibbs free energy of the enzyme 



binding reaction has its minimum around 50 0C. In a conventional PCR model, however, enzyme 

binding is considered to occur during the extension reaction (10, 11). In the next section, we 

motivate fully time-varying state space models by showing that simultaneous annealing and 

extension reactions result in significant differences in reaction efficiency that can be exploited 

through such modeling. These effects are not captured in conventional models of PCR kinetics. 

3.1. Combined Annealing and Extension 

At any instant, since all the reactants for annealing, enzyme binding and extension reactions are 

available in the reaction mixture, these reactions can in principle occur simultaneously. The 

combined annealing and extension model allows us to simulate arbitrary PCR reaction cycling 

protocols that do not follow the standard 3-step scheme, hence extending beyond the types of 

“on-off” behavior commonly assumed in models of PCR. Due to this phenomenon, molecular 

biologists often run PCR reaction with only two steps per cycle - one step for melting and one 

step for annealing/extension. However, there is no quantitative prescription available for the 

temperatures of the annealing/extension steps. In order to provide such prescriptions, in this 

section we do not distinguish between the annealing and extension steps and solve the kinetic 

equations corresponding to all these steps together for the overall reaction time. This is one of 

the main reasons for the need for temperature-dependent rate parameters. The reaction conditions 

are the same as those in a typical PCR. Annealing and extension times are fixed to be 45 and 30 

seconds, respectively, and the length of the target DNA is assumed to be 1000 base pairs (bp). 

The extension reaction temperature is 72 0C. At a given time, since one of the 3 steps of  PCR is 

kinetically dominating, the rates of the all the reactions are not uniform. This difference in 

reaction rates   creates a stiff state space system that needs to be solved carefully. We used the 

MATLAB routine ode15s to solve this system of stiff differential equations. 

Although the annealing reaction is very fast at low temperatures, its efficiency is determined by 

the kinetics of the enzyme binding reaction. Therefore, even at high annealing temperatures at 

which the equilibrium conversion of the annealing reaction in the absence of enzyme binding is 

low, it is possible to obtain 100% overall efficiency. The evolution of single strands, single 

strand-primer duplex and final DNA for a single cycle at the annealing temperatures 35 0C, 40 0C 

and 45 0C are presented in Fig 6b. The temperature cycling profile for each annealing 

temperature is shown in Fig 6a. At an annealing temperature of 35 0C the annealing reaction can 



reach 100 % equilibrium conversion. The equilibrium conversion of the enzyme binding reaction 

at this temperature is less than 70%. Nevertheless, the overall PCR conversion is more than 70% 

at 35 0C. This is due to the combined annealing, enzyme binding and extension reactions. The 

extension reaction (or subsequent shifts the equilibrium of the enzyme binding reaction,  

allowing more enzymes bind to the SP duplexes. The extension reaction rate increases when 

temperature increases.  

In the annealing step, all SP is converted into E.Di molecules, which can then dissociate into Di. 

During this step, since the enzyme dissociation rate constant is comparable to the extension rate 

constants, E.Di molecules dissociate. Fig. 6b shows the profile of the sum of concentrations of 

Di. When the temperature of the reaction is increased to 72 0C during the extension step, the 

equilibrium of E.Di dissociation is disturbed by the rapid nucleotide addition and eventually all 

Di molecules are converted  to E.Di, which are in turn converted into target DNA. The melting 

temperatures of the primers in this study (Table 1) are less than 35 0C, and as a result of this, 45 
0C annealing temperature did not produce more DNA. Since the rate constants of the enzyme 

binding and extension reactions at 35 and 40 0C are comparable, the the evolution of the DNA 

molecules at these two temperatures is similar. However, at 40 0C, the overall reaction is faster. 

 

 

 

 

 

 

 



        

(a)                                                                           (b) 

 

               (c) 

Figure 6.  a) Three different temperature cycling samples. b) Transient behavior of 

reaction constituents (Di  and DNA molecules) for Primer set 1. c) Transient behavior of 

reaction constituents for Primer set 2. In both cases the annealing temperatures are 35 0C, 

40 0C and 45 0C and the length of the target is  1000 bp. Annealing and extension times are 

45 and 50 seconds, respectively. Primer, enzyme, and dNTP concentrations are 0.2 μM, 10 

nM, and 800 μM, respectively. Since melting was assumed to be 100% efficient and melting 

dynamics were not simulated in these studies, species concentrations in b,c) are plotted 

starting with the annealing step. 

 



We have repeated the above analysis for a different set of primer sequences (primer set 2) of 

the same length and the same reaction conditions. The sequences for primer set 2 are  

Primer 1 ='AATAGCTGTAACTG'; 
Primer 2 ='TTCTTCTGAAACTG'; 
 

and the rate parameters have been calculated as explained in Section 2. Fig. 6c shows the 

evolution of DNA and the sum of Di concentrations. Unlike primer set 1 (Table 1), in this case 

the favorable annealing temperature is 35 0C. Furthermore, for the same overall reaction time, 

the overall conversion is different for the two primer sets. This demonstrates that the sequence 

dependent kinetic model is important. 

It should be noted that aforementioned results are applicable to the first cycle of a PCR reaction. 

In the above study, the enzyme concentration is in excess compared to the single strand 

concentration. If this condition does not hold, which is the case for the later stages of PCR, the 

kinetics could be very different. Also, during every PCR cycle, the target DNA concentration 

increases. As a result, the overall number of required nucleotide additions will also increase. 

Therefore, the reaction conditions that have been maintained during the initial stages of PCR 

may not be appropriate for the later stages of the PCR. This effect is more pronounced for longer 

sequences. Furthermore, note that even though our model considers the melting of SP molecules 

during the extension reaction, it does not consider the melting of Di molecules during the 

extension reaction for the following reasons: 

• Our simulation results suggest that even though [ ]i
i

D  is considerable at the end of 

annealing step, as shown in Fig. 6b and 6c, the summation of the concentrations of D1 to 

D15 molecules is negligible. Therefore, we assume that these molecules are not present in 

the reaction mixture. 

• The stability/ melting temperature of a duplex increases when the number of base pairs 

increases. In the present study we have considered primers of length 14 base pairs. 

Therefore, since Di with i<15 can be neglected, the minimum number of base pairs in Di 

is greater than 30 and we assume that these duplexes are stable at 72 0C.  

Thus, in this Section we have established that 



• Even during the annealing step, enzyme binding and extension reactions can occur 

simultaneously. Hence the state equations of annealing, enzyme binding and extension 

reaction should be solved together. As will be shown below, it is possible to exploit these 

simultaneous reactions to improve PCR reaction efficiency through appropriate model-

implied choices of temperature cycling strategies. 

• As an example, the kinetic model for annealing and extension can provide a quantitative 

prescription for two-step PCR (melting and combined annealing/extension). 

• There should be an optimal annealing temperature at which the reaction is fastest and 

reaches 100% completion. Importantly, this temperature cannot be computed based on 

primer melting temperatures alone. 

When the length of the target DNA increases, and hence more nucleotides must be added, 

the annealing reaction temperature should be higher and reaction time should be 

increased. Again, the kinetic model for annealing and extension can provide a 

quantitative prescription for the optimal annealing time and temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2. Geometric Growth of DNA 

 

(a)                                                                         (b) 

Figure 7: a) Temperature profile for the first cycle at three different annealing 

temperatures. The same temperature profile is followed for all other cycles. b) Geometric 

Growth of DNA. Annealing and Extension reaction time in each step of the PCR are 45 and 

30 seconds, respectively. The extension temperature is fixed to be 72 0C. Initial 

concentration of template, primers (primer set 1), enzyme, and nucleotide is 10-14 M, 0.2 

μM, 10 nM and 800 μM, respectively. 

For fixed annealing and extension times of 45 and 30 seconds, respectively, the state equations 

of the PCR reaction scheme were next solved at three different annealing temperatures, over 

multiple PCR cycles. The temperature cycling profile is shown in Fig. 7a. Fig. 7b shows the 

geometric growth of DNA concentration. When the annealing temperature is 35 0C, the DNA 

concentration saturates at 20 nM after 26 cycles, whereas at 40 0C annealing temperature, the 

DNA concentration is approximately equal to 35 nM after 27 cycles. Although the efficiencies at 

35 and 40 0C annealing temperature are approximately same in the first cycle, as shown in Fig. 

6b, when the cycle number increases, the final DNA concentration differs. At 45 0C, the final 

DNA concentration is higher than that at 35 0C. It should be noted that when the target DNA 

concentration is comparable with enzyme concentration, the dynamics of the PCR reaction 

depends on the annealing temperature. Ideally, the maximum concentration of the target DNA 

should be equal to primer concentration. Therefore, during the initial stage of the PCR, target 

DNA concentration is the limiting reactant. Once the target DNA concentration exceeds the 



enzyme concentration, the latter is the limiting reactant. From Fig. 7b it is clear that in the second 

stage the PCR efficiency is lower and a different reaction condition needs to be maintained to 

improve the efficiency. 

4. Conclusion 

In this work, we have developed the first sequence- and temperature-dependent kinetic model for 

DNA amplification, through biophysical modeling of coupled DNA melting and polymerization 

processes. Using this model, the kinetics of PCR have been analyzed for various temperature 

cycling strategies.  Based on the results of this kinetic analysis, the need for systematic 

optimization of temperature cycling strategies has been established. The theory of optimal 

control of dynamical systems (5) provides a framework for the computation of the optimal 

temperature cycling protocols for DNA amplification. Use of the proposed sequence-dependent 

kinetic model in a control-theoretic framework should enable determination of the optimal 

dynamic operating conditions of DNA amplification reactions, for any specified amplification 

objective. Through the application of this kinetic state space model, it may thus be possible to  i) 

improve the overall amplification efficiency of the reaction by orders of magnitude for the same 

number of cycles; ii) substantially reduce the overall time of the reaction  compared to 

conventional PCR protocols.  Future work will consider an optimal control framework and 

solution strategy for maximization of the amplification efficiency, as well as control problems 

pertaining to other DNA amplification objectives. These include problems involving the co-

amplification of multiple DNA sequences and the automated design of new types of PCR 

reactions. Models for such problems can be built on principles directly analogous to those 

presented in this paper. 

 

 

 

 

 



Appendix 

A.1 PCR Reactions 
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A.1.3. Enzyme Binding and Extension 
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A.2 Differential Equations for the PCR modeling. 
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A.2.3. Enzyme Binding and Extension 
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Figure A1: Sequence and Temperature dependent PCR Model (Rate Constants) 
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