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Abstract: In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-

throughput screenings. Most scoring functions implemented in popular docking software packages were developed

with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced

technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as

molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born sur-

face area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/

PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 pro-

tein–ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and

many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular

dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our

results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the perform-

ance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein–ligand complexes. The

best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman’s correlation coeffi-

cient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In

summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is ef-

ficient to re-score the top-hit poses produced by other less-accurate scoring functions.
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Introduction

Molecular docking is one of the most important techniques for

receptor-based drug design.1 It can be used to propose the struc-

tural hypotheses of how ligands interact with the targets and

screen compound libraries to identify potential drug candidates

against the targets before experimental high-throughput screen-

ings.2 Despite the significant successes, molecular docking still

faces a lot of challenges, especially for efficiently exploring the

conformational space of target proteins and ligands and develop-

ing scoring functions to estimate the free energies of protein–
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ligand binding. Scoring function is critical for molecular docking

to identify the correct binding poses and to rank different

ligands with respect to calculated binding free energies. How-

ever, it is not practical to use the most accurate and also compu-

tationally expensive scoring functions in docking studies, in

which a great number of docking poses and molecules needs to

be evaluated. In consideration of computational efficiency,

approximations were introduced in most docking scoring func-

tions, which often affect the accuracy of predictions.

The available scoring functions for molecular docking can be

roughly divided into three categories: force-field-based, empiri-

cal, and knowledge-based approaches. Force-field-based

approach estimates the binding affinities by calculating the non-

bonded interactions based on traditional force fields, such as the

scoring functions used by DOCK3 and Autodock.4 The empirical

approach (e.g., Ludi,5 FlexX,6 ChemScore,7 Xscore,8 and Glide9)

incorporates some empirically weighted interaction terms such

as van der Waals, electrostatic, and solvation energies with ad-

justable parameters for scoring. These parameters are fitted from

the experimental binding free energies of a set of crystal com-

plexes. The knowledge-based (mean force) scoring function

(e.g., SMoG,10 PMF,11 and DrugScore12) was developed from

statistical analysis of the distances between pairs of atom types

found in protein–ligand structures. Despite the continuous efforts

to improve the scoring functions,13–15 their accuracy to rank the

binding poses and to predict the binding free energies still

remains unsatisfactory.

In many molecular docking approaches, one scoring function

is used for two tasks: identifying the correct binding pose of a

ligand and ranking ligands using the predicted binding affinities.

Alternatively, one can use a computationally efficient scoring

function to predict the binding poses and then use a more rigor-

ous scoring function to recalculate the binding energies of the

top-hit poses. Such an approach may make a good balance

between computational efficiency and accuracy.

Since the end of the last century, combining molecular

mechanics energy and implicit solvation models, such as molec-

ular mechanics/Poisson Boltzmann surface area (MM/PBSA)

and molecular mechanics/generalized Born surface area (MM/

GBSA), became popular in free-energy calculations and molecu-

lar docking studies.16–18 MM/PBSA and MM/GBSA are more

rigorous than most empirical or knowledge-based scoring func-

tions. In addition, molecular dynamics (MD) simulations MM/

PBSA or MM/GBSA can effectively deal with the conforma-

tional change on ligand binding. Moreover, both MM/PBSA and

MM/GBSA allow for rigorous free-energy decomposition into

contributions originating from different groups of atoms or types

of interaction.19–21

Previous studies have shown that MM/PBSA or MM/GBSA

are efficient to identify the correct binding poses and rank the

inhibitors for specific targets.22–27 However, there is no system-

atic and large-scale evaluation of the performance of MM/PBSA

or MM/GBSA to identify the correct docking poses and rank the

affinities of ligands for a diverse set of binding sites. Here, we

conducted a systematic investigation of MM/PBSA and MM/

GBSA for 98 protein–ligand complexes. Our results showed that

MM/PBSA and MM/GBSA outperformed 11 scoring functions

widely used in molecular docking. To our best knowledge, this

work represents one of the most extensive studies of MM/PBSA

or MM/GBSA for molecular docking. We found that MM/

GBSA is computationally more efficient than MM/PBSA and

also achieved a comparable or even better accuracy, although

MM/PBSA is theoretically more rigorous.

Materials and Methods

Preparation of Protein–Ligand Complexes

The data set used in this study is from Wang et al.15 In the orig-

inal applications, this data set, which contains 100 protein–

ligand complexes was used to compare the performance of 11

popular scoring functions. For each complex, 100 docked con-

formations were generated by the Autodock program (version

3.0). These docked conformations were assumed to cover the

entire binding pocket and its vicinity area. The total number of

the docking poses of each ligand is 101, including 100 docked

conformations and the bound conformation of the ligand defined

by experiment. We found that the data for the complex 1tet

reported by Wang et al. is not correct. In their study, a citric

acid was taken as the ligand. In fact, cholera toxin peptide 3

(CTP3) was in complex with the protein TE33, the Fab fragment

of a monoclonal antibody. The original binding data were also

reported for the CTP3/TE33 interactions. Therefore, we took out

1tet from the Wang et al.’s data set. In addition, we also

removed 1tha because the GB parameters for iodine were not

available in AMBER9.0. Finally, we have 98 protein–ligand

complexes in the data set.

All ligands were optimized using the Broyden-Fletcher-Gold-

farb-Shanno (BFGS) technique. We then used the semi-empirical

quantum method implemented in the divcon program28 in

AMBER929 to derive AM1-BCC partial charges for all ligand

atoms. We used the same protonation states of the ligands as

Wang et al.15 The AM1-BCC charges calculation is much faster

than the HF/6-31G* RESP charges.30 Previous studies showed

that MM/PBSA using AM1-BCC and RESP charges gave com-

patible binding free energies.31

In our calculations, all Asp and Glu residues were negatively

charged, and all Lys and Arg residues were positively charged.

In the MM minimizations and MD simulations, we used

AMBER03 force field for proteins,32 and the general AMBER

force field (gaff) for ligands.33 Counter-ions of Cl2 or Na1 were

placed at grids with the largest positive or negative Coulombic

potentials around the receptors to neutralize the charge of the

systems.

Optimization of Protein–Ligand Complexes

For each complex, the conformations of the 100 docking poses

and the experimentally-determined binding pose were optimized

in the active site of the target. Considering the large number of

binding poses in our study, we studied the solvent effect by

using a 16-Å water cap instead of a water box with periodic

boundary conditions. We placed the water cap in the center of

mass of the ligand, which encapsulated the whole ligand. The

maximum number of minimization steps was set to 4000, and

the convergence criterion was set to be 0.05 kcal/mol/Å of the
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root-mean-square (rms) of the Cartesian energy gradient. The

first 500 minimization steps were performed with the steepest

descent algorithm, and the rest with the conjugate gradient algo-

rithm. During the minimizations, only the ligand, the protein res-

idues, and the water molecules within 9 Å of the ligand were

allowed to move and other atoms were fixed.

Rescoring with MM/PBSA

For each minimized ligand pose/protein complex, the binding

free energy of MM/PBSA was estimated as in eq. (1)16,17,34:

DGbind ¼ Gcomplex � Gprotein � Gligand

¼ DEMM þ DGPB þ DGnonpolar � TDS
(1)

where DEMM is the gas-phase interaction energy between protein

and ligand, including the electrostatic and the van der Waals

energies; DGPB and DGnonplar are the polar and nonpolar compo-

nents of the desolvation free energy, respectively; (TDS is the

change of conformational entropy on ligand binding, which was

not considered here because of the expensive computational

cost. The DGPB term was calculated by Delphi II35 to solve the

finite-difference Poisson-Boltzmann equation. In Delphi calcula-

tions, the grid spacing was set to 0.5 Å, and the grid size was

determined to have the longest linear dimension extended 20%

outside the protein. The Parse radii were used for all atoms.36

Because the radii of F and Br were absent from the Parse set,

the Pauling van der Waal radii of F and Br (1.35 and 1.95 Å)37

were adopted for Delphi calculations. The value of the exterior

dielectric constant was set to 80, and the solute dielectric con-

stant was set to three different values: 1, 2, and 4. The nonpolar

contribution was determined based on solvent-accessible surface

area (SASA) with the LCPO method38: DGSA 5 0.0072 3
DSASA.

Rescoring with MM/GBSA

In MM/GBSA calculations, the gas-phase interaction energy

(DEMM) and the nonpolar (DGSA) part of the solvation energy

were calculated in the same way as MM/PBSA calculations. The

electrostatic solvation energy (DGGB) was calculated by using

the GB models. Again we use 80 for the exterior dielectric con-

stant and three different values of 1, 2, and 4 for the solute

dielectric constant. We used three GB models implemented in

AMBER9.0, namely, the pairwise GB model developed by Haw-

kins and coworkers (termed as GBHCT),39,40 with parameters

developed by Tsui and Case,41 and two modified GB models

developed by Onufriev et al.42 (referred as GBOBC1 and

GBOBC2). It should be noted that in AMBER, the GBOBC1 and

GBOBC2 model were parameterized for Bondi radii.42

MD Simulations and Rescoring with MM/GBSA

We carried out MD simulations to further optimize the protein–

ligand interaction for the top three poses of 13 protein–ligand

complexes, where the correct binding conformations were not

ranked as the best conformations according to the MM/GBSA

free energies. The binding free energies were then recalculated

using the MD trajectories. The PDB entries for the 13 com-

plexes were 1apw, 1bhf, 1cbx, 1d3d, 1dr1, 1exw, 1mnc, 1pph,

1rgl, 1tmn, 2csc, 2pk4, and 7tln.

To perform MD simulations, each protein–ligand complex

was immersed in a rectangular box of TIP3P water molecules.

The water box was extended 10 Å away from any solute atom.

The particle mesh Ewald (PME) was used to calculate the long-

range electrostatic interactions.43 The complexes were first

relaxed using 2000 cycles of minimization procedure (500 cycles

of steepest descent and 1500 cycles of conjugate gradient mini-

mization). The system was then gradually heated in the NVT en-

semble from 10 to 300 K over 20 ps.44 Initial velocities were

assigned from Maxwellian distribution at the starting tempera-

ture. Then 300-ps MD simulations were preformed in the NPT

ensemble, with target temperature at 300 K and target pressure

at 1 atm. The SHAKE procedure was used to constrain all

hydrogen atoms, and the time step was set to 2.0 fs. MD snap-

shots were saved every 4 ps after the systems were well equili-

brated. The MM optimization and MD simulations were accom-

plished with the sander program in AMBER9.0.29 Finally, the

binding free energies were calculated using the MM/GBSA

method averaged over 60 snapshots that were evenly extracted

from the single trajectory of complex between 60 and 300 ps

MD simulations.

Results and Discussion

The Predictions of Binding Poses of MM/GBSA or MM/

PBSA Rescoring

The Prediction Accuracy of the MM/GBSA Rescoring

We first applied the MM/GBSA technique to rescore the dock-

ing decoys of 98 protein–ligand complexes compiled by Wang

et al.15 The rescoring was only based on the single minimized

structures. In the GB calculations, the modified GB model devel-

oped by Onufriev et al.42 (igb 5 2 in AMBER9.0 and termed as

GBOBC1) was used, and the solute dielectric constant was 1. We

used the root mean square deviation (RMSD) as the criterion for

the success of the prediction. If RMSD of the best-scored pose

was less than or equal to 2.0 Å from the experimentally

observed conformation, we considered it was a successful pre-

diction. As shown in Table 1, we observed that MM/GBSA suc-

cessfully recognizes the native-like poses for 61 of the entire 98

complexes, i.e., the success rate was 62.2%. Then we calculated

the success rate considering the best two to five best-scored

poses of each ligand (Table 1), in which the success rate was

improved significantly. For example, if the top three and five

conformations were considered, the success rate was improved

from 62.2% to 84.7% and 88.8%, respectively. For some target

proteins, the experimentally determined pose was in the very top

scored conformations even though it was not recognized as the

best by MM/GBSA.

In MM/GBSA or MM/PBSA, the solute dielectric constant

(ein) is a key parameter. For each system, another two solute

dielectric constants, 2.0 and 4.0, were also tested for calculating

the solvation free energies (Table 1). If we considered only the

best-scored conformation, the success rate of ein 5 1 (62.2%)
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was apparently worse than that of ein 5 2 (69.4%), but better

than that of ein 5 4 (58.2%). However, when top three scored

conformations were considered, the success rate of ein 5 1

(84.7%) was the best, which was slightly better than that of ein
5 2 (82.7%) and much better than that of ein 5 4 (73.5%).

Therefore, for most cases, 1 or 2 was a good choice for the sol-

ute dielectric constant.

Three GB models, namely, the pairwise GB model developed

by Hawkins and coworkers39,40 (GBHCT, referred as igb 5 1)

and two modified GB models developed by Onufriev et al.42

(GBOBC1 and GBOBC2, referred as igb 5 2 and 5, respectively),

were implemented in AMBER9.0. The 101 decoys of each of

the 98 protein–ligand complexes were rescored again by the

MM/GBSA method using the three GB models. For each model,

three different solute dielectric constants (ein 5 1, 2, and 4)

were tested. According to the success rates listed in Table 1, for

all of three solute dielectric constants, the performance of

GBOBC2 was worse than that of GBHCT and GBOBC1, whereas

the performance of GBHCT and GBOBC1 was quite similar. It is

not clear what is the reason behind the different performance of

GBOBC1 and GBOBC2 because they have the same theoretic

framework. Interestingly, our previous studies of the MM/PBSA

or MM/GBSA calculations on six protein–ligand systems also

showed that GBOBC1 performed much better than GBOBC2 for

predicting the binding free energies.45

The Prediction Accuracy of the MM/PBSA Rescoring

Numerical solution of the Poisson-Boltzmann (PB) equation is

more theoretically rigorous than the GB model and is believed

to be more accurate but more computationally demanding. The

performance of the MM/PBSA method on the docking pose

rescoring was also evaluated. The success rates for the MM/

PBSA calculations are listed in Table 1. If we only consider the

best-scored conformations, the success rates of MM/PBSA were

31.3% for ein 5 1, 45.5% for ein 5 2, and 42.4% for ein 5 4.

The success rates were increased to 41.4%, 53.5%, and 60.6%,

respectively, when the best three conformations were considered.

Compared with the three GB models, the performance of MM/

PBSA was only marginally better than that of GBOBC2, but

much worse than that of the MM/GBSA schemes based on

GBHCT and GBOBC1. This result is consistent with our previous

observations,45 in which the MM/GBSA based on GBOBC1

scheme performed better than MM/PBSA to rank the binding

affinities of ligands for protein systems without metals in the

binding sites. Recently, Thompson et al.46 applied MM/PBSA to

discriminate correct and incorrect docking poses. They found

that the solvation energy calculated by PB cannot improve the

prediction accuracy significantly in the absence of X-ray struc-

tures of complexes. Our analysis indicates that the solvation free

energy is very important, and it is critical to choose an appropri-

ate solvation model and solute dielectric constant.

Comparison with Other Scoring Functions

Wang et al.15 compared the performance of 11 popular scoring

functions for molecular docking on the 98 complexes. The suc-

cess rates of these scoring functions vary from 26% (DSCORE)

to 76% (PLP). Our results showed that the MM/GBSA based on

the GBOBC1 model achieved a success rate of 69.4% using a sol-

ute dielectric constant of 2.0 if we only considered the best-

scored conformation. This success rate was higher than those of

seven scoring functions (D-Score, G-Score, AutoDock, Chem-

Score, X-Score, LUDI, and PMF), but lower than those of four

other scoring functions (PLP, F-Score, LigScore, and Drug-

Score).15 If the three best conformations were considered, the

success rate given by MM/GBSA was higher than those of nine

scoring functions, but lower than those of PLP and F-Score.

When the top five conformations were considered, the perform-

ance of MM/GBSA was only worse than F-Score, but better

than the other 10 scoring functions (Table S1 in the Supporting

Materials).

In general, for the 11 scoring functions studied by Wang

et al., the force field-based scoring functions (Autodock, GScore,

Table 1. Success Rates of MM/PBSA and MM/GBSA Considering One to Five Best-Scored Conformations.

Scoring functions

Success rate (%)

Best 1 Best 2 Best 2 Best 4 Best 5

MM/GBSA

igb 5 1, ein 5 1 64.3 (63/98) 78.6 (77/98) 85.7 (84/98) 85.8 (84/98) 88.8 (87/98)

igb 5 1, ein 5 2 67.3 (66/98) 76.5 (75/98) 82.7 (81/98) 84.7 (83/98) 85.7 (84/98)

igb 5 1, ein 5 4 54.1 (53/98) 69.4 (68/98) 71.4 (70/98) 76.5 (75/98) 77.6 (76/98)

igb 5 2, ein 5 1 62.2 (61/98) 77.6 (76/98) 84.7 (83/98) 86.7 (85/98) 88.8 (87/98)

igb 5 2, ein 5 2 69.4 (68/98) 76.5 (75/98) 82.7 (81/98) 83.7 (82/98) 85.7 (84/98)

igb 5 2, ein 5 4 58.2 (57/98) 71.4 (70/98) 73.5 (72/98) 75.5 (74/98) 77.6 (76/98)

igb 5 5, ein 5 1 31.6 (31/98) 49.0 (48/98) 56.1 (55/98) 60.2 (59/98) 65.3 (64/98)

igb 5 5, ein 5 2 39.8 (39/98) 55.1 (54/98) 59.2 (58/98) 66.3 (65/98) 69.4 (68/98)

igb 5 5, ein 5 4 43.9 (43/98) 55.1 (54/98) 63.3 (62/98) 68.4 (67/98) 75.5 (74/98)

MM/PBSA

ein 5 1 38.8 (38/98) 43.9 (43/98) 50.0 (49/98) 50.0 (50/98) 53.1 (52/98)

ein 5 2 56.1 (55/98) 56.1 (55/98) 60.2 (59/98) 66.3 (65/98) 68.4 (67/98)

ein 5 4 50.0 (49/98) 63.3 (62/98) 69.7 (69/99 75.5 (74/98) 79.6 (78/98)
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and DScore), without explicit desolvation energy, achieved

lower success rates than the other types of scoring functions.

The higher success rate of MM/GBSA implies that the desovla-

tion term is critical to identify the correct binding poses. For the

other eight empirical and knowledge-based scoring functions, a

caveat is that they were developed by fitting the experimentally

determined structural and binding data for a large training set

with various sets of protein–ligand complexes. Indeed, many

proteins in Wang et al.’s data set were used in the training sets

to parameterize these scoring functions. For example, all 100

experimentally determined complexes in the data set used by

Wang et al. were also used as the training set for training the X-

Score scoring function. Therefore, the success rate of such scor-

ing functions may only reflect how well the parameterization is

done. In contrary, the parameterization of MM/GBSA does not

include any information of the interaction between the ligands

and the proteins in the studied complexes.

The Energy Landscape for Protein–Ligand Binding

The protein–ligand complexation is speculated to have a funnel-

shaped energy surface,15 originally used in protein folding stud-

ies. Similar to the work reported by Wang et al.,15 we studied

the energy landscape of ligand binding by using RMSD as the

reaction coordinate. It is expected that a lower RMSD is associ-

ated with a stronger binding value and vice versa. We analyzed

the correlations between the RMSD and the binding free ener-

gies calculated using MM/PBSA or MM/GBSA models listed in

Table 1. The Spearman’s correlation coefficients (rs) are listed

in Table 2. We also provided cumulative occurrences of rs val-
ues for comparison. As shown in Table 2, MM/GBSA gave bet-

ter correlations than MM/PBSA, whereas the GBOBC1 and

GBHCT models performed better than GBOBC2. More specifi-

cally, the GBOBC1 model using a solute dielectric constant of 2

gave the best correlation, and its rs values were better than or

equal to 0.60 for 60% of the 98 proteins. Six examples with the

best and worst correlations are shown in Figure 1.

The good performance of MM/GBSA seems more impressive

if we compare it with the results of 11 scoring functions com-

pared by Wang et al.15 In the data reported by Wang et al., the

cumulative occurrences of rs � 0.6 for 11 scoring functions vary

from 16% to 53% for the 100 proteins, which is obviously worse

than that of MM/GBSA. In summary, the MM/GBSA scoring

gives a better funnel-shaped energy landscape than all scoring

functions compared by Wang et al.

The Importance of MD Sampling for Recognizing the

Correct Binding Poses

In the practice of virtual screening, we usually keep the best

conformation predicted by molecular docking for further analy-

sis. As shown in Table 1, the best MM/GBSA model, GBOBC1

using a solute dielectric constant of 2, ranked the correct binding

conformation as the best-scored conformation from the 101

docking decoys for 68 complexes. For the other 30 protein com-

plexes, 13 had their correct binding conformations ranked in the

top three, and three in top five but not in top three, and 14

beyond top five. Because only a single minimized conformation

was used for MM/GBSA calculations, it is possible that insuffi-

cient sampling of conformational space may harm the perform-

ance of MM/GBSA. Here, we studied whether conformational

sampling could improve the prediction accuracy.

For the 13 complexes whose binding conformations were

ranked in the top three but not the best one, we conducted MD

simulations for the best three scored docking poses The PDB

entries for these 13 complexes are 1apw, 1bhf, 1cbx, 1d3d,

1dr1, 1exw, 1mnc, 1pph, 1rgl, 1tmn, 2csc, 2pk4, and 7tln. The

binding free energy for each docking pose was calculated by

averaging 60 snapshots evenly taken from 60 to 300 ps MD sim-

ulations (Table 3 and Table S1 in the Supporting Materials). As

shown in Table 3, with solute dielectric constant 2, the confor-

mations in nine complexes with the most favorable binding free

energies were very close to the experimentally observed binding

poses (RMSD � 2.0 Å). For 2csc, the best conformation was

not far from the correct binding pose either (RMSD 5 2.49 Å).

The correct binding poses could not be identified as the best-

scored conformations in three complexes, 1mnc, 1pph, and 1rgl.

In summary, MD simulation improved the prediction accuracy

by conformational sampling.

Next, we investigated the effect of conformational entropy.

We first predicted the binding poses only using enthalpy (DHcal).

For eight systems, the correct binding poses can be successfully

identified by using DHcal. The inclusion of entropy can only

improve the prediction for one system, i.e., 7tln. For 7tln, the

binding enthalpies for three poses are quite similar. After con-

sidering entropy, the binding free energy of the correct pose is

marginally better than those of the other two poses. Therefore,

the inclusion of the entropies did not significantly improve the

results for the protein systems studied here.

Interestingly, for most of the 13 protein systems, the van der

Waals energies of the best three binding conformations did not

differ significantly, which means that the ligand has similar van

der Waals or hydrophobic contacts with the receptor, although

Table 2. Correlations Between the Calculated Binding Free Energies and

RMSD Given by the MM/PBSA and MM/GBSA Calculations.

Scoring functions

Cumulative occurrence of

Spearman’s correlation coefficient (rs)

�0.00 �0.20 �0.40 �0.60 �0.80

MM/GBSA

igb 5 1, ein 5 1 96 92 77 47 11

igb 5 1, ein 5 2 96 91 76 57 13

igb 5 1, ein 5 4 91 85 72 49 3

igb 5 2, ein 5 1 96 93 74 46 7

igb 5 2, ein 5 2 96 91 77 60 13

igb 5 2, ein 5 4 95 90 77 55 6

igb 5 4, ein 5 1 81 70 59 31 2

igb 5 4, ein 5 2 86 78 62 39 6

igb 5 4, ein 5 4 95 87 68 44 5

MM/PBSA

ein51 55 28 19 2 0

ein52 75 60 38 17 1

ein54 85 73 58 27 0
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Figure 1. The correlations between the predicted binding free energies of MM/GBSA and the RMSD

values for three complexes with the best correlations and three complexes with the worst correlations.
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the orientations of the three docking poses are different. How-

ever, with regard to the electrostatic energies (DEele and DGGB),

the three docking poses are significantly different. Therefore, for

most cases, the accurate predictions of the electrostatic terms are

essential for the successful predictions of the binding poses.

We then tested another solute dielectric constant (ein 5 1) for

the MM/GBSA calculations (Table S2 in the Supporting Materi-

als). The comparison between Table 3 and Table S2 shows that

the absolute binding free energies calculated by using two differ-

ent solute dielectric constants are quite different, but the per-

formance of ranking binding poses is similar. MM/GBSA based

on ein 5 1 also give correct predictions for nine systems. For

two systems, 1rgl and 2csc, the MM/GBSA cannot give the cor-

rect answers for both dielectric constants. For 1pph, the correct

docking pose is correctly predicted by using MM/GBSA with ein
5 1, but not with ein 5 2. For 7tln, MM/GBSA with ein 5 2

gives the correct answer but not for ein 5 1. Therefore, the per-

formance of ein 5 1 and 2 is not different for predicting the

binding poses.

For the 13 complexes listed in Table 3, the correct binding

poses for 1rgl and 2csc cannot be successfully identified as the

best-scored conformations with MM/GBSA based on either ein
5 2 or ein 5 1. For 2csc, the prediction is not bad because the

best-scored conformation is not far from the correct binding

pose (RMSD 5 2.49 Å). Compared with 2csc, 1rgl is obviously

a more difficult system. For 1rgl, the binding free energy

Table 3. The Predicted Binding Free Energies and the Individual Energy Terms for the Best Three Scored

Poses of 13 Complexes Based on the Single Minimized Structures Using the MM/GBSA Technique Based on

the GBOBC1 Model and the Solute Dielectric Constant of 2.

PDB Rank DEele DEvdw DGPB DGSA 2TDS DHcal. DGcal. RMSD1a RMSD2b

1apw 8 221.79 255.37 30.05 27.86 227.73 254.98 227.25 3.84 4.53

101 230.06 255.09 35.94 27.98 223.91 257.19 233.28 0.00 1.38

7 28.71 250.65 19.43 26.98 223.50 246.91 223.41 3.30 4.29

1bhf 20 2276.04 239.14 258.20 26.88 228.54 263.86 235.32 4.77 5.31

8 2293.42 234.40 273.86 26.54 231.80 260.51 228.71 5.92 5.92

101 2271.16 237.93 251.62 27.23 227.61 264.70 237.09 0.00 1.77

1cbx 10 271.98 223.67 72.81 23.87 216.83 226.72 29.89 3.56 4.13

9 264.70 218.89 58.78 24.05 215.39 228.86 213.47 3.01 1.16

101 281.05 222.03 74.70 23.86 218.22 232.24 214.02 0.00 1.08

1d3d 10 29.98 256.55 18.30 27.83 219.85 256.08 236.23 2.29 2.81

5 210.14 258.94 19.83 27.73 220.08 256.98 236.90 1.77 1.35

6 28.70 258.94 20.49 27.98 227.19 255.15 227.96 3.37 4.51

1dr1 22 223.50 233.67 26.36 24.23 216.64 235.04 218.40 2.92 1.79

1 222.65 233.43 26.52 24.16 218.75 233.73 214.98 1.05 1.20

101 223.19 234.68 26.60 24.14 218.88 235.40 216.52 0.00 1.55

1exw 12 32.10 240.57 225.94 26.25 217.63 240.65 223.02 2.45 3.05

1 11.13 239.62 29.48 26.15 221.93 244.12 222.19 1.24 1.45

13 21.56 239.24 221.00 25.96 220.88 244.65 223.77 2.24 1.55

1mnc 3 218.25 246.15 22.62 26.01 222.55 247.78 225.23 8.58 7.45

45 216.44 249.06 25.03 26.36 222.97 246.83 223.86 8.47 10.10

11 236.29 238.60 33.78 25.71 224.26 246.81 222.55 1.31 1.41

1pph 29 24.90 234.74 2.87 24.72 220.27 241.50 221.23 4.27 4.96

17 12.16 243.45 210.82 25.44 221.06 247.55 226.49 7.25 7.58

101 217.16 237.36 13.62 24.66 223.14 245.56 222.42 0.00 1.20

1rgl 42 70.88 221.97 260.82 23.37 216.91 215.27 1.64 7.44 12.16

30 110.25 223.05 294.95 23.52 221.60 211.27 10.33 0.99 1.79

13 88.01 225.58 282.29 23.94 221.33 223.80 22.47 3.89 4.23

1tmn 9 124.74 242.19 2111.51 26.24 224.33 235.19 210.86 6.82 8.01

1 106.37 241.73 296.71 26.41 219.69 238.40 218.71 2.28 2.38

101 97.74 243.21 289.42 26.22 216.88 241.11 224.23 0.00 1.52

2csc 18 2193.72 28.87 168.62 22.41 215.73 236.39 220.66 3.16 2.49

16 2174.91 28.50 159.30 22.54 214.11 226.66 212.55 3.04 1.75

13 2137.80 28.74 124.05 22.44 212.62 224.93 212.31 1.75 2.06

2pk4 6 275.08 210.43 66.53 22.74 217.74 221.72 23.98 2.92 1.39

101 220.47 215.44 22.02 22.65 215.03 216.50 21.47 0.00 2.63

1 226.30 214.60 27.11 22.70 215.52 216.49 20.97 0.90 1.87

7tln 16 219.61 220.91 19.60 23.91 212.87 224.84 211.97 4.39 4.56

10 27.43 224.82 11.94 24.01 211.65 224.31 212.66 1.50 1.84

5 28.10 225.97 13.46 24.20 214.22 224.81 210.59 2.01 2.65

aRMSD for pose before MD simulations.
bRMSD between the averaged structure of the MD simulations and the crystal structure.

872 Hou et al. • Vol. 32, No. 5 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



(22.47 kcal/mol) of the best-scored pose (conformation 13) is

much more favorable than that (10.33 kcal/mol) of the experi-

mentally determined pose (conformation 30). According to the

analysis of the binding interface of 1rgl (Fig. 2a), three charged

residues can be found in the binding site of 1rgl, including

Glu58, Arg77, and His92. More importantly, the ligand in 1rgl

has a highly negatively charged phosphate group (net charge is

22), which can form strong ion–ion interactions with Arg77 and

His92. Although for conformation 13, as shown in Figure 2b,

the phosphate group is exposed to the solvent and no longer

forms ion–ion interactions with the charged residues in the bind-

ing pocket. Therefore, conformations 13 and 30 form different

binding interfaces, and it is possible that we need to apply dif-

ferent solute dielectric constant to characterize the different elec-

trostatic properties of the binding interfaces. Another possible

reason is that the PB or GB models usually cannot give good

predictions for the solvation of ions,47 probably because the

errors of force fields and reaction field calculation cannot be

effectively cancelled out when ion–ion interactions dominate the

binding free energies.

In conclusion, in most cases, short MD simulation can help

MM/GBSA to identify the experimentally determined binding

conformations. Previous results reported by Kuhn et al.24 con-

cluded that applying the MM-PBSA energy function to a single

optimized complex structure is an adequate and sometimes more

accurate approach than the standard free energy averaging over

MD snapshots. Our calculations here clearly show that applying

MM/GBSA scoring to a single relaxed structure may not be

enough to predict the binding poses correctly. The ultimate rea-

son why MM/GBSA based on a single structure is not successful

for some systems is that a single structure cannot characterize

the conformational fluctuations in different local minima. There-

fore, for these systems, MD simulations are necessary to

improve the predictions.

Why Some Systems Could Not be Correctly Predicted by

MM/GBSA

There are 11 complexes in our test set for which MM/GBSA

based on either ein 5 1 or 2 cannot pick the correct binding con-

formation within an RMSD threshold of 2.0 Å in the top five

conformations, which are 1cla, 1d3p, 1etr, 1rgk, 1tlp, 2sns, 3cla,

3tmn, 4cla, 4tln, and 8xia (Table S3 in the Supporting Materi-

als).

In 1tlp, the inhibitor N-phosphoryl-L-leucinamide (P-Leu-

NH2) complexed to thermolysin, and one phosphoramidate oxy-

gen atom, one glutamine, and two histidine residues interact

with the zinc to form a pentacoordinate (Fig. 3). Unfortunately,

this zinc ion was removed from the protein when generating the

decoys by molecular docking. We believe that removal of this

zinc will underestimate the interactions between the correct

binding conformation and thermolysin. The failures in other

three cases, 2sns, 4tln, and 8xia, are also due to the similar rea-

sons. It is clear that the currently available scoring functions still

need to be improved for systems with ions that form coordinate

bonds with ligands.

The complexes 1cla, 3cla, and 4cla are type II chlorampheni-

col acetyltransferases in complex with chloramphenicol (3cla is

the wild type of chloramphenicol acetyltransferase, 1cla is a

S148A mutant, and 4cla is a L160F mutant). According to our

predictions, for these three complexes, the best five scored con-

formations are far from the correct ones. For 3cla, according to

our predictions, the binding free energies for the best five scored

conformation are 238.32, 234.30, 233.18, 232.33, and

231.91 kcal/mol, respectively, whereas the binding free energy

for the correct binding conformation is 224.84 kcal/mol. For

these three complexes, the experimentally determined binding

poses cannot even be found in the best 10 scored conformations.

Analysis of the 3cla crystal structure shows that many water

molecules mediate the protein–ligand interactions (Fig. 4).

According to Wang et al.’s report,15 when generating the decoys

by Autodock, the crystal water molecules were removed. The

correct binding conformation of the ligand in 3cla is not energet-

ically favorable when the important bridging water molecules

are not considered. Another point is that even though the crystal

structure is explicitly added to the decoys, the predictions of the

binding free energies for these three systems are still difficult. It

remains challenging for MM/GBSA or MM/PBSA to handle

Figure 2. The interaction between RNase T1 mutant Glu46Gln and

(a) conformation 13 and (b) conformation 30 of ligand 20GMP. The

charged phosphate groups are shown in red stick; the Connolly

surfaces for Glu50, Arg77, and His92 are colored in yellow, violet,

and blue, respectively.
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bridging crystal water molecules and define the appropriate sol-

ute dielectric constant with many water molecules. Moreover,

according to Wang et al.’s study,15 none of the 11 scoring func-

tions is able to pick the correct conformation for these two com-

plexes. The unsuccessful predictions for other systems may also

be explained by the neglect of the important bridging water mol-

ecules, such as in the cases of 1d3p and 1etr. In 1etr, three water

molecules are important for the interactions between the ligand

and the protein, and, in 1d3p, there is one such important water

molecule. Correctly considering the effects of the essential

bridging water molecules is thus an important task for develop-

ing scoring functions. Explicitly including some water mole-

cules, especially the crystal waters, in MM/PBSA and MM/

GBSA calculations may be an efficient way to tackle the chal-

lenging problem.

The complex 1rgk, i.e., RNase T1 mutant Glu46Gln, is in

complex with inhibitor 20gmp. As noted above, for 1rgl, the cor-

rect binding pose cannot be identified even after a short MD

simulation. The protein in 1rgl is also RNase T1 mutant

Glu46Gln but the ligand is 20amp, which is similar to that in

1rgk. Therefore, it is straightforward to understand why the pre-

diction for 1rgk is not successful: the electrostatic terms cannot

be accurately predicted.

The reason for the poor predictions on the system 3tmn is

not obvious. For 1d3p, the predictions are not very bad. In the

best-scored conformations, three of them are not far from the

correct binding poses (RMSD\ 3.0 Å).

The Prediction of MM/PBSA or MM/GBSA to Rank the

Binding Affinities for Various Protein–Ligand Complex

Systems

Prediction of binding poses is the first step of molecular dock-

ing. Another important task is to rank compounds using the pre-

dicted binding free energies. Therefore, the accuracy of the bind-

ing free energy prediction is also critical for evaluating a scoring

function.

We first examined the performance of MM/GBSA for the 98

protein–ligand complexes. The linear correlation coefficients (r)
and the Spearman’s rank correlation coefficients (rs) between the

predicted and the experimental binding free energies are sum-

marized in Table 4. The Spearman’s correlation coefficients may

be a better choice to evaluate a scoring function for ranking the

binding affinities. For each case, both of the binding free ener-

gies for the experimentally observed conformations and those of

the best-scored conformations were used for the correlation anal-

ysis. Overall, the Spearman’s correlation coefficients using the

experimentally observed conformations are better than those

using the best-scored conformations, but the differences are not

significant. For the two GB models compared here, the MM/

GBSA scores with ein 5 2 perform better than those with ein 5
1. Using ein 5 1, GBOBC1 and GBHCT perform comparatively to

predict the binding free energies, whereas using ein 5 2 GBOBC1

performs significantly better than GBHCT. Among all these mod-

els, the MM/GBSA scores based on GBOBC1 with ein 5 2 give

the best ranks for all complexes studied here, which has a Spear-

man’s coefficient of 0.66 using the experimentally observed con-

formations and 0.63 using the best-scored conformations.

As shown in Table 4 and Figure 5, the correlation between

the predicted binding free energies by MM/PBSA and the exper-

imental values are 0.48. That means that MM/PBSA performs

much worse than MM/GBSA. This observation is also consistent

with our previous report.45 Here, the Parse parameter set was

used to define the dielectric boundary. However, studies have

shown that Parse parameter set cannot give good predictions of

solvation free energies for amino acid side chain analogs and

some relatively complicated functional groups for all three sol-

ute dielectric constants (ein 5 1, 2, or 4).16

Finally, we compared the performance of the MM/GBSA

with those of the 11 scoring functions reported by Wang et al.15

The Spearman’s correlation coefficients reported by Wang et al.

cover the range from 0.14 to 0.66 for the experimentally

observed conformations and 0.37 to 0.70 for the best-scored

Figure 4. The interaction between chloramphenicol and chloram-

phenicol acetyltransferase in complex with 3cla. Ligand is colored

in violet. The water molecules within 5 Å of ligand are shown as

the CPK model, and the water molecule that can mediate the inter-

actions between ligand and proteins are colored in red.

Figure 3. The coordinate bonds formed by the zinc ion with one

phosphoramidate oxygen atom, one glutamine, and two histidine res-

idues. The zinc ion is colored in yellow, protein residues in blue,

and ligand in violet.
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conformations. According to the results reported by Wang et al.

and our predictions, MM/GBSA is only marginally worse than

X-Score, but better than the other 10 scoring functions. It should

be stressed that all 100 complexes used by Wang et al. have

been included in the training set to train the X-Score scoring

function. It is thus expected that the X-Score performs better on

this set of complexes than the other scoring functions. For MM/

GBSA, no binding affinity data are needed for parameter train-

ing, and, therefore, it does not rely on any particular protein

data sets for training, whereas most docking scoring functions

do. Because MM/GBSA does not need training for specific pro-

tein systems, it has a capacity to study a wide range of targets

and ligands. We have also demonstrated that MM/GBSA

achieves a satisfactory performance in identifying the experi-

mentally determined conformations from docking decoys as well

as in predicting the binding free energies. One thing we need to

mention is that MM/PBSA or MM/GBSA is certainly time-con-

suming than most scoring functions (usually less than 5 s for

each system) used in molecular docking. For example, for 1a46,

the whole running time of MM/PBSA or MM/GBSA for each

pose is �520 (2.55 s for charge calculations, 396 s for 5000

steps of GB-based minimization, and 120 s for MM/PBSA) and

�410 s (2.55 s for charge calculations, 396 s for 5000 steps of

GB-based minimization, and 8 s for MM/PBSA), respectively. If

we need to perform MM minimization and MM/GBSA calcula-

tions for 1000 systems, the total running time is �285 days one

CPU-time; however, if the calculations can be distributed to a

cluster with 100 nodes, the total running time is less than 3

days.

Discussion

We studied MM/PBSA or MM/GBSA for identifying the correct

binding conformations and predicting the binding free energies.

First, we studied 98 protein–ligand complexes with MM/PBSA

or MM/GBSA method to discriminate correct docking poses

from the incorrect ones. The MM/GBSA can successfully iden-

tify the correct binding conformations for most systems, indi-

cated by a success rate about 69% if only considering the best-

scored conformation or a success rate about 85% if considering

the top three conformations. Comparison studies show that MM/

GBSA performs much better than MM/PBSA, and most scoring

functions used in molecular docking to recognize the correct

binding conformations.

We then studied 13 complexes whose correct binding confor-

mations could not be identified as the best-scored conformation

but as the second or the third best-scored conformation. For

these 13 complexes, the binding free energies for the best three

scored conformations were re-evaluated by MM/GBSA based on

short MD simulations. The results show that the conformational

sampling by MD can significantly improve the predictions for

these 13 complexes. For the most promising candidates (less

than 100) in virtual screenings, MD simulations followed by

MM/GBSA analysis is a good protocol to achieve good predic-

tions of protein–ligand interactions. Here, for three conforma-

tions of 1apw, 300 ps MD simulations consumed about 48 (16

3 3) CPU hours. For 100 molecules, it takes roughly 6.2 days

with a 32-CPU Linux cluster, which is becoming commonly

available.

Finally, we evaluated the performance of MM/GBSA and

MM/PBSA to rank the binding free energies of the 98 protein–

ligand complexes. The best MM/GBSA predictions yield Spear-

man’s correlation coefficients of 0.63 for the experimentally

determined conformations and 0.66 for the best-scored confor-

mations, which are much better than MM/PBSA and also almost

all the scoring functions used in molecular docking. Compared

with most scoring functions in molecular docking, the MM/

GBSA can achieve a better balance between identifying the

binding poses and predicting the binding free energies. There-

fore, using a rapid scoring scheme followed by the MM/GBSA

rescoring is an efficient protocol to improve the predictions of

molecular docking. According to our predictions, it is obvious

that predicting the docking poses is usually an easier task

than predicting the binding free energies for different molecules.

When predicting the binding poses for a small molecule, the

Table 4. The Linear Correlation Coefficients (r) and the Spearman’s Correlation Coefficients (rs) between the

Predicted Binding Free Energies and the Experimental Values Based on the Experimentally Observed

Conformations and the Best-Scored Conformations.

Scoring functions

r rs

Experimentally observed

conformations

Best-scored

conformations

Experimentally observed

conformations

Best-scored

conformations

MM/GBSA

igb 5 1, ein 5 1 0.497 0.484 0.548 0.526

igb 5 1, ein 5 2 0.585 0.592 0.596 0.597

igb 5 1, ein 5 4 0.602 0.628 0.609 0.568

igb 5 2, ein 5 1 0.451 0.482 0.541 0.529

igb 5 2, ein 5 2 0.615 0.624 0.655 0.625

igb 5 2, ein 5 4 0.633 0.652 0.645 0.628

MM/PBSA

ein 5 1 0.214 0.157 0.207 0.193

ein 5 2 0.484 0.462 0.493 0.487

ein 5 4 0.246 0.242 0.474 0.482
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Figure 5. The linear correlation coefficients between the experimental binding free energies and the pre-

dicted values given by (a) MM/GBSA using the GBHCT model and the solute dielectric constant of 2 based

on the experimentally observed conformations, (b) MM/GBSA using the GBHCT model and the solute

dielectric constant of 2 based on the best-scored conformations, (c) MM/GBSA using the GBOBC1 model

and the solute dielectric constant of 2 based on the experimentally observed conformations, (d) MM/GBSA

using the GBOBC1 model and the solute dielectric constant of 2 based on the best-scored conformations, (e)

MM/PBSA using the solute dielectric constant of 2 based on the experimentally observed conformations,

and (f) MM/PBSA using the solute dielectric constant of 2 based on the best-scored conformations.



systematical errors caused by the predictions may be considered

as a constant. But when we predict the binding free energies for

a set of different molecules, the systematic errors for different

ligands cannot be considered as a constant. This is the reason

why MM/PBSA or MM/GBSA usually cannot give good per-

formance for dissimilar ligands.16
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